CullNet: Calibrated and pose aware confidence scores for object pose estimation

dc.contributor.authorGupta, Kartik
dc.contributor.authorPetersson, Lars
dc.contributor.authorHartley, Richard
dc.contributor.editorLee, Kyoung Mu
dc.contributor.editorForsyth, David
dc.contributor.editorPollefeys, Marc
dc.contributor.editorTang, Xiaoou
dc.coverage.spatialSeoul South Korea
dc.date.accessioned2023-07-20T00:15:29Z
dc.date.createdOct 27-Nov 2 2019
dc.date.issued2019
dc.date.updated2022-05-22T08:15:49Z
dc.description.abstractWe present a new approach for single view, image-based object pose estimation in real time. Specifically, the problem of culling false positives among several pose proposal estimates is addressed in this paper. Our proposed approach targets the problem of inaccurate confidence values predicted by CNNs which is used by many current methods to choose a final object pose prediction. We present a new network called CullNet, solving this task. CullNet takes pairs of pose masks rendered from a 3D model, and cropped regions in the original image as input. This is then used to calibrate the confidence scores of the pose proposals. This new set of confidence scores is found to be significantly more reliable for accurate object pose estimation as shown by our results. Our experimental results on multiple challenging datasets (LINEMOD and Occlusion LINEMOD) clearly reflects the utility of our proposed method. Our overall pose estimation pipeline outperforms state-of-the-art object pose estimation methods on these standard object pose estimation datasets. The code is available at https://github.com/kartikgupta-at-ANU/CullNet.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9781728148038en_AU
dc.identifier.urihttp://hdl.handle.net/1885/294442
dc.language.isoen_AUen_AU
dc.publisherIEEE, Institute of Electrical and Electronics Engineersen_AU
dc.relation.ispartofseries2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019en_AU
dc.rights© 2019 IEEEen_AU
dc.sourceProceedings of the 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019en_AU
dc.titleCullNet: Calibrated and pose aware confidence scores for object pose estimationen_AU
dc.typeConference paperen_AU
local.bibliographicCitation.lastpage2766en_AU
local.bibliographicCitation.startpage2758en_AU
local.contributor.affiliationGupta, Kartik, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationPetersson, Lars, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationHartley, Richard, College of Engineering and Computer Science, ANUen_AU
local.contributor.authoremailu4022238@anu.edu.auen_AU
local.contributor.authoruidGupta, Kartik, u6262923en_AU
local.contributor.authoruidPetersson, Lars, u4048690en_AU
local.contributor.authoruidHartley, Richard, u4022238en_AU
local.description.embargo2099-12-31
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor460304 - Computer visionen_AU
local.identifier.ariespublicationa383154xPUB11587en_AU
local.identifier.doi10.1109/ICCVW.2019.00337en_AU
local.identifier.scopusID2-s2.0-85082467851
local.identifier.thomsonIDWOS:000554591602099
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://www.ieee.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
CullNet.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description: