The Use of Event-Related Potentials and Machine Learning to Improve Diagnostic Testing and Prediction of Disease Progression in Parkinson's Disease
dc.contributor.author | Vlieger, Robin | |
dc.contributor.author | Daskalaki, Eleni | |
dc.contributor.author | Apthorp, Deborah | |
dc.contributor.author | Lueck, Christian | |
dc.contributor.author | Suominen, Hanna | |
dc.contributor.editor | Honey, M. | |
dc.contributor.editor | Ronquillo, C. | |
dc.contributor.editor | Lee, T.-T. | |
dc.contributor.editor | Westbrooke, L. | |
dc.coverage.spatial | ONLINE | |
dc.date.accessioned | 2024-01-29T22:08:01Z | |
dc.date.available | 2024-01-29T22:08:01Z | |
dc.date.created | 23 AUGUST – 2 SEPTEMBER 2021 | |
dc.date.issued | 2021 | |
dc.date.updated | 2022-10-02T07:18:43Z | |
dc.description.abstract | Current tests of disease status in Parkinson's disease suffer from high variability, limiting their ability to determine disease severity and prognosis. Event-related potentials, in conjunction with machine learning, may provide a more objective assessment. In this study, we will use event-related potentials to develop machine learning models, aiming to provide an objective way to assess disease status and predict disease progression in Parkinson's disease. | en_AU |
dc.description.sponsorship | This research was funded by and has been delivered in partnership with Our Health in Our Hands (OHIOH), a strategic initiative of the ANU, which aims to transform health care by developing new personalized health technologies and solutions in collaboration with patients, clinicians, and health-care providers. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.isbn | 978-1-64368-220-4 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/312392 | |
dc.language.iso | en_AU | en_AU |
dc.provenance | This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). doi:10.3233/SHTI210737 | en_AU |
dc.publisher | IOS Press | en_AU |
dc.relation.ispartofseries | 15th international congress in nursing information | en_AU |
dc.rights | © 2021 International Medical Informatics Association (IMIA) and IOS Press. | en_AU |
dc.rights.license | Creative Commons Attribution 4.0 International License | en_AU |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | en_AU |
dc.source | Nurses and Midwives in the Digital Age | en_AU |
dc.subject | Diagnosis | en_AU |
dc.subject | event-related potentials | en_AU |
dc.subject | machine learning | en_AU |
dc.subject | Parkinson disease | en_AU |
dc.subject | disease status | en_AU |
dc.subject | prediction | en_AU |
dc.title | The Use of Event-Related Potentials and Machine Learning to Improve Diagnostic Testing and Prediction of Disease Progression in Parkinson's Disease | en_AU |
dc.type | Conference paper | en_AU |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.lastpage | 335 | en_AU |
local.bibliographicCitation.startpage | 333 | en_AU |
local.contributor.affiliation | Vlieger, Robin, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Daskalaki, Eleni, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Apthorp, Deborah, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.affiliation | Lueck, Christian, College of Health and Medicine, ANU | en_AU |
local.contributor.affiliation | Suominen, Hanna, College of Engineering and Computer Science, ANU | en_AU |
local.contributor.authoremail | u5331246@anu.edu.au | en_AU |
local.contributor.authoruid | Vlieger, Robin, u7021239 | en_AU |
local.contributor.authoruid | Daskalaki, Eleni, u1085378 | en_AU |
local.contributor.authoruid | Apthorp, Deborah, u5331246 | en_AU |
local.contributor.authoruid | Lueck, Christian, u1807496 | en_AU |
local.contributor.authoruid | Suominen, Hanna, u4872279 | en_AU |
local.description.notes | Imported from ARIES | en_AU |
local.description.refereed | Yes | |
local.identifier.absfor | 420318 - People with disability | en_AU |
local.identifier.absfor | 320905 - Neurology and neuromuscular diseases | en_AU |
local.identifier.ariespublication | a383154xPUB24117 | en_AU |
local.identifier.doi | 10.3233/SHTI210737 | en_AU |
local.identifier.scopusID | 2-s2.0-85122043820 | |
local.identifier.uidSubmittedBy | a383154 | en_AU |
local.publisher.url | https://ebooks.iospress.nl/doi/10.3233/SHTI210737 | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- SHTI-284-SHTI210737.pdf
- Size:
- 114.71 KB
- Format:
- Adobe Portable Document Format
- Description: