The Use of Event-Related Potentials and Machine Learning to Improve Diagnostic Testing and Prediction of Disease Progression in Parkinson's Disease

dc.contributor.authorVlieger, Robin
dc.contributor.authorDaskalaki, Eleni
dc.contributor.authorApthorp, Deborah
dc.contributor.authorLueck, Christian
dc.contributor.authorSuominen, Hanna
dc.contributor.editorHoney, M.
dc.contributor.editorRonquillo, C.
dc.contributor.editorLee, T.-T.
dc.contributor.editorWestbrooke, L.
dc.coverage.spatialONLINE
dc.date.accessioned2024-01-29T22:08:01Z
dc.date.available2024-01-29T22:08:01Z
dc.date.created23 AUGUST – 2 SEPTEMBER 2021
dc.date.issued2021
dc.date.updated2022-10-02T07:18:43Z
dc.description.abstractCurrent tests of disease status in Parkinson's disease suffer from high variability, limiting their ability to determine disease severity and prognosis. Event-related potentials, in conjunction with machine learning, may provide a more objective assessment. In this study, we will use event-related potentials to develop machine learning models, aiming to provide an objective way to assess disease status and predict disease progression in Parkinson's disease.en_AU
dc.description.sponsorshipThis research was funded by and has been delivered in partnership with Our Health in Our Hands (OHIOH), a strategic initiative of the ANU, which aims to transform health care by developing new personalized health technologies and solutions in collaboration with patients, clinicians, and health-care providers.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn978-1-64368-220-4en_AU
dc.identifier.urihttp://hdl.handle.net/1885/312392
dc.language.isoen_AUen_AU
dc.provenanceThis article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0). doi:10.3233/SHTI210737en_AU
dc.publisherIOS Pressen_AU
dc.relation.ispartofseries15th international congress in nursing informationen_AU
dc.rights© 2021 International Medical Informatics Association (IMIA) and IOS Press.en_AU
dc.rights.licenseCreative Commons Attribution 4.0 International Licenseen_AU
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_AU
dc.sourceNurses and Midwives in the Digital Ageen_AU
dc.subjectDiagnosisen_AU
dc.subjectevent-related potentialsen_AU
dc.subjectmachine learningen_AU
dc.subjectParkinson diseaseen_AU
dc.subjectdisease statusen_AU
dc.subjectpredictionen_AU
dc.titleThe Use of Event-Related Potentials and Machine Learning to Improve Diagnostic Testing and Prediction of Disease Progression in Parkinson's Diseaseen_AU
dc.typeConference paperen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage335en_AU
local.bibliographicCitation.startpage333en_AU
local.contributor.affiliationVlieger, Robin, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationDaskalaki, Eleni, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationApthorp, Deborah, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationLueck, Christian, College of Health and Medicine, ANUen_AU
local.contributor.affiliationSuominen, Hanna, College of Engineering and Computer Science, ANUen_AU
local.contributor.authoremailu5331246@anu.edu.auen_AU
local.contributor.authoruidVlieger, Robin, u7021239en_AU
local.contributor.authoruidDaskalaki, Eleni, u1085378en_AU
local.contributor.authoruidApthorp, Deborah, u5331246en_AU
local.contributor.authoruidLueck, Christian, u1807496en_AU
local.contributor.authoruidSuominen, Hanna, u4872279en_AU
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor420318 - People with disabilityen_AU
local.identifier.absfor320905 - Neurology and neuromuscular diseasesen_AU
local.identifier.ariespublicationa383154xPUB24117en_AU
local.identifier.doi10.3233/SHTI210737en_AU
local.identifier.scopusID2-s2.0-85122043820
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://ebooks.iospress.nl/doi/10.3233/SHTI210737en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SHTI-284-SHTI210737.pdf
Size:
114.71 KB
Format:
Adobe Portable Document Format
Description: