Hydrophilic tannic acid-modified WS2 nanosheets for enhanced polysulfide conversion in aqueous media

dc.contributor.authorTian, Yuheng
dc.contributor.authorWu, Kuang-Hsu
dc.contributor.authorTan, Xin
dc.contributor.authorZeng, Qingcong
dc.contributor.authorAmal, Rose
dc.contributor.authorWang, Da-Wei
dc.date.accessioned2023-09-17T22:28:15Z
dc.date.available2023-09-17T22:28:15Z
dc.date.issued2019
dc.date.updated2022-07-31T08:18:30Z
dc.description.abstractPolysulfide-based organic battery systems have demonstrated great potential for large scale energy storage, but are restricted by the cost and the flammability of the organic solvents. It would be ideal to establish the aqueous-based polysulfide electrochemistry to enable cost-effective stationary energy storage. However, the sluggish reaction kinetics of polysulfide placed a serious fundamental barrier to implementation. Here we developed hydrophilic tannic acid modified WS2 nanosheets as polysulfide conversion electrocatalysts in alkaline aqueous solutions. The tannic acid not only acted as a negatively-charged surfactant to effectively delaminate the bulk WS2 sheets, but also functionalised the delaminated WS2 nanosheets through the attachment of tannic acid functional groups, resulting in greatly improved hydrophilicity. Using graphene as the conductive support, the tannic acid-modified hydrophilic WS2 nanosheets demonstrated a promoting electrocatalytic activity for polysulfide oxidation and reduction in aqueous solution. The incorporation of tannic acid imposed the collective interactions between polysulfide and the WS2 nanosheets via the hydrophilic molecules and the polar surfaces. With a 0.5 M Li2S2 electrolyte, the graphene and modified WS2 mixture gave an areal specific capacity of 0.37 mAh cm−2, compared to 0.27 mAh cm−2 for the pure graphene.en_AU
dc.description.sponsorshipthe UNSW Faculty of Engineering Start-up grant, and the UNSW-THU seed grant.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn2515-7655en_AU
dc.identifier.urihttp://hdl.handle.net/1885/299575
dc.language.isoen_AUen_AU
dc.provenanceOriginal content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.en_AU
dc.publisherInstitute of Physics Publishing Ltd.en_AU
dc.relationhttp://purl.org/au-research/grants/arc/DP160103244en_AU
dc.rights© 2018 The authorsen_AU
dc.rights.licenseCreative Commons Attribution licenceen_AU
dc.rights.urihttp://creativecommons.org/licenses/by/3.0en_AU
dc.sourceJournal of Physics: Energyen_AU
dc.subjectWS2en_AU
dc.subjectaqueous polysulfide reactionen_AU
dc.subjecttannic aciden_AU
dc.subjectexfoliationen_AU
dc.titleHydrophilic tannic acid-modified WS2 nanosheets for enhanced polysulfide conversion in aqueous mediaen_AU
dc.typeJournal articleen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage12en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationTian, Yuheng, The University of New South Walesen_AU
local.contributor.affiliationWu, Kuang-Hsu, The University of New South Walesen_AU
local.contributor.affiliationTan, Xin, College of Science, ANUen_AU
local.contributor.affiliationZeng, Qingcong, University of New South Walesen_AU
local.contributor.affiliationAmal, Rose, University of New South Walesen_AU
local.contributor.affiliationWang, Da-Wei, University of New South Walesen_AU
local.contributor.authoremailu1052556@anu.edu.auen_AU
local.contributor.authoruidTan, Xin, u1052556en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor400804 - Electrical energy storageen_AU
local.identifier.absseo280110 - Expanding knowledge in engineeringen_AU
local.identifier.ariespublicationa383154xPUB29124en_AU
local.identifier.citationvolume1en_AU
local.identifier.doi10.1088/2515-7655/aaead4en_AU
local.identifier.scopusID2-s2.0-85103783085
local.identifier.uidSubmittedBya383154en_AU
local.publisher.urlhttps://iopscience.iop.org/en_AU
local.type.statusPublished Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tian_2019_J._Phys._Energy_1_015005.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description: