Open Research will be unavailable from 8am to 8.30am on Monday 21st July 2025 due to scheduled maintenance. This maintenance is to provide bug fixes and performance improvements. During this time, you may experience a short outage and be unable to use Open Research.
 

Evolutionary Conservation of ABA Signaling for Stomatal Closure

Date

Authors

Cai, Shengguan
Chen, Guang
Wang, Yuanyuan
Huang, Yuqing
Marchant, D. Blaine
Wang, Yizhou
Yang, Qian
Dai, Fei
Hills, Adrian
Franks, Peter

Journal Title

Journal ISSN

Volume Title

Publisher

American Society of Plant Biologists

Abstract

Abscisic acid (ABA)-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 million years ago. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis (Arabidopsis thaliana) and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABAresponsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report, to our knowledge, new molecular and physiological evidence for the presence of active stomatal control in ferns.

Description

Keywords

Citation

Source

Plant Physiology

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution licence

Restricted until