Task 1 of the CLEF eHealth Evaluation Lab 2016: Handover Information Extraction

dc.contributor.authorSuominen, Hanna
dc.contributor.authorZhou, Liyuan
dc.contributor.authorGoeuriot, Lorraine
dc.contributor.authorKelly, Liadh
dc.contributor.editorCappellato, Larsen B.
dc.coverage.spatialEvora, Portugal
dc.date.accessioned2022-05-16T04:56:38Z
dc.date.available2022-05-16T04:56:38Z
dc.date.createdSeptember 5-8 2016
dc.date.issued2016
dc.date.updated2020-12-27T07:30:48Z
dc.description.abstractCascaded speech recognition (SR) and information extraction(IE) could support the best practice for clinical handover and release clinicians’ time from writing documents to patient interaction and education. However, high requirements for processing correctness evoke methodological challenges and hence, processing correctness needs to be carefully evaluated as meeting the requirements. This overview paper reports on how these issues were addressed in a shared task of the eHealth evaluation lab of the Conference and Labs of the Evaluation Forum (CLEF) in 2016. This IE task built on the 2015 CLEF eHealth Task on SR by using its 201 synthetic handover documents for training and validation (appr. 8, 500 + 7, 700 words) and releasing another 100 documents with over 6, 500 expert-annotated words for testing. It attracted 25 team registrations and 3 team submissions with 2 methods each. When using the macro-averaged F1 over the 35 form headings present in the training documents for evaluation on the test documents, all participant methods outperformed all 4 baselines, including the organizers’ method (F1 = 0.25), published in 2015 in a top-tier medical informatics journal and provided to the participants as an option to build on, a random classifier (F1 = 0.02), and majority classifiers for the two most common classes (i.e., NA to filter out text irrelevant to the form and the most common form heading, both with F1 < 0.00). The top-2 methods (F1 = 0.38 and 0.37) had statistically significantly (p < 0.05, Wilcoxon signed-rank test) better performance than the third-best method (F1 = 0.35). In comparison, the top-3 methods and the organizers’ method (7th) had F1 of 0.81, 0.80, 0.81, and 0.75 in the NA class, respectivelyen_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.isbn9783319445632en_AU
dc.identifier.urihttp://hdl.handle.net/1885/265427
dc.language.isoen_AUen_AU
dc.provenancehttps://www.springernature.com/gp/open-research/policies/book-policies..."Authors whose work is accepted for publication in a non-open access Springer or Palgrave Macmillan book are permitted to self-archive the accepted manuscript (AM), on their own personal website and/or in their funder or institutional repositories, for public release after an embargo period (see the table below). " from the publisher site (as at 16 May 2022)en_AU
dc.publisherSpringeren_AU
dc.relation.ispartofseries7th International Conference of the CLEF Association, CLEF 2016en_AU
dc.rights© 2016 Springeren_AU
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_AU
dc.titleTask 1 of the CLEF eHealth Evaluation Lab 2016: Handover Information Extractionen_AU
dc.typeConference paperen_AU
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.lastpage14en_AU
local.bibliographicCitation.startpage1en_AU
local.contributor.affiliationSuominen, Hanna, College of Engineering and Computer Science, ANUen_AU
local.contributor.affiliationZhou, Liyuan, NICTAen_AU
local.contributor.affiliationGoeuriot, Lorraine, Universite Grenoble Alpesen_AU
local.contributor.affiliationKelly, Liadh, Trinity College Dublinen_AU
local.contributor.authoremailu4872279@anu.edu.auen_AU
local.contributor.authoruidSuominen, Hanna, u4872279en_AU
local.description.notesImported from ARIESen_AU
local.description.refereedYes
local.identifier.absfor080105 - Expert Systemsen_AU
local.identifier.absseo920210 - Nursingen_AU
local.identifier.absseo970108 - Expanding Knowledge in the Information and Computing Sciencesen_AU
local.identifier.ariespublicationu4334215xPUB1690en_AU
local.identifier.citationvolume1609en_AU
local.identifier.scopusID2-s2.0-84984820786
local.identifier.uidSubmittedByu4334215en_AU
local.publisher.urlhttps://link.springer.com/en_AU
local.type.statusAccepted Versionen_AU

Downloads

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Task 1 of the CLEF eHealth Evaluation Lab 2016.pdf
Size:
380.04 KB
Format:
Adobe Portable Document Format
Description: