The study of thermal silicon dioxide electrets formed by corona discharge and rapid-thermal annealing
Date
Authors
Kho, Teng C
Baker-Finch, Simeon
McIntosh, Keith R
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Physics
Abstract
A silicon dioxide (SiO₂) electret passivates the surface of crystalline silicon (Si) in two ways: (i) when annealed and hydrogenated, the SiO₂–Si interface has a low density of interface states, offering few energy levels through which electrons and holes can recombine; and (ii) the electret’s quasipermanent charge repels carriers of the same polarity, preventing most from reaching the SiO₂–Si interface and thereby limiting interface recombination. In this work, we engineer a charged thermal SiO₂electret on Si by depositing corona charge onto the surface of an oxide-coated Si wafer and subjecting the wafer to a rapid thermal anneal (RTA). We show that the surface-located corona charge is redistributed deeper into the oxide by the RTA. With 80 s of charging, and an RTA at 380 °C for 60 s, we measure an electretcharge density of 5 × 10¹² cm⁻², above which no further benefit to surface passivation is attained. The procedure leads to a surface recombination velocity of less than 20 cm/s on 1 Ω-cm n-type Si, which is commensurate with the best passivation schemes employed on high-efficiency Si solar cells. In this paper, we introduce the method of SiO₂electret formation, analyze the relationship between charge density and interface recombination, and assess the redistribution of charge by the RTA.
Description
Citation
Collections
Source
Journal of Applied Physics
Type
Book Title
Entity type
Access Statement
License Rights
Restricted until
Downloads
File
Description
Published Version