Functional time series approach for forecasting very short-term electricity demand
dc.contributor.author | Shang, Hanlin | |
dc.date.accessioned | 2020-01-07T04:59:44Z | |
dc.date.issued | 2013 | |
dc.date.updated | 2019-08-18T08:16:02Z | |
dc.description.abstract | This empirical paper presents a number of functional modelling and forecasting methods for predicting very short-term (such as minute-by-minute) electricity demand. The proposed functional methods slice a seasonal univariate time series (TS) into a TS of curves; reduce the dimensionality of curves by applying functional principal component analysis before using a univariate TS forecasting method and regression techniques. As data points in the daily electricity demand are sequentially observed, a forecast updating method can greatly improve the accuracy of point forecasts. Moreover, we present a non-parametric bootstrap approach to construct and update prediction intervals, and compare the point and interval forecast accuracy with some naive benchmark methods. The proposed methods are illustrated by the half-hourly electricity demand from Monday to Sunday in South Australia. | en_AU |
dc.description.sponsorship | This work was partially supported by the postgraduate publication award of Monash University | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 0266-4763 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/196565 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | Taylor & Francis | en_AU |
dc.rights | © 2013 Taylor & Francis | en_AU |
dc.source | Journal of Applied Statistics | en_AU |
dc.subject | functional principal component analysis | en_AU |
dc.subject | multivariate time series | en_AU |
dc.subject | ordinary least-squares regression | en_AU |
dc.subject | penalised least-squares regression | en_AU |
dc.subject | roughness penalty | en_AU |
dc.subject | seasonal time series | en_AU |
dc.title | Functional time series approach for forecasting very short-term electricity demand | en_AU |
dc.type | Journal article | en_AU |
local.bibliographicCitation.issue | 1 | en_AU |
local.bibliographicCitation.lastpage | 168 | en_AU |
local.bibliographicCitation.startpage | 152 | en_AU |
local.contributor.affiliation | Shang, Hanlin, College of Business and Economics, ANU | en_AU |
local.contributor.authoremail | u5506744@anu.edu.au | en_AU |
local.contributor.authoruid | Shang, Hanlin, u5506744 | en_AU |
local.description.embargo | 2037-12-31 | |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 010401 - Applied Statistics | en_AU |
local.identifier.absfor | 160305 - Population Trends and Policies | en_AU |
local.identifier.ariespublication | a383154xPUB1061 | en_AU |
local.identifier.citationvolume | 40 | en_AU |
local.identifier.doi | 10.1080/02664763.2012.740619 | en_AU |
local.identifier.scopusID | 2-s2.0-84870863987 | |
local.identifier.thomsonID | 000313029300012 | |
local.identifier.uidSubmittedBy | a383154 | en_AU |
local.publisher.url | https://www.routledge.com/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 01_Shang_Functional_time_series_2013.pdf
- Size:
- 298.4 KB
- Format:
- Adobe Portable Document Format