Groups of prime-power order with a small second derived quotient
dc.contributor.author | Schneider, Csaba | |
dc.date.accessioned | 2015-12-13T22:36:47Z | |
dc.date.available | 2015-12-13T22:36:47Z | |
dc.date.issued | 2003 | |
dc.date.updated | 2015-12-11T09:33:39Z | |
dc.description.abstract | For odd primes we prove some structure theorems for finite p-groups G, such that G″ ≠ 1 and G′/G″ = p3. Building on results of Blackburn and Hall, it is shown that γ3(G) is a maximal subgroup of G′, the group G has a central decomposition into | |
dc.identifier.issn | 0021-8693 | |
dc.identifier.uri | http://hdl.handle.net/1885/76941 | |
dc.publisher | Elsevier | |
dc.source | Journal of Algebra | |
dc.subject | Keywords: Derived subgroup; Finite p-groups; Second derived subgroup | |
dc.title | Groups of prime-power order with a small second derived quotient | |
dc.type | Journal article | |
local.bibliographicCitation.issue | 2 | |
local.bibliographicCitation.lastpage | 551 | |
local.bibliographicCitation.startpage | 539 | |
local.contributor.affiliation | Schneider, Csaba, College of Physical and Mathematical Sciences, ANU | |
local.contributor.authoremail | repository.admin@anu.edu.au | |
local.contributor.authoruid | Schneider, Csaba, u4291807 | |
local.description.notes | Imported from ARIES | |
local.description.refereed | Yes | |
local.identifier.absfor | 010105 - Group Theory and Generalisations | |
local.identifier.ariespublication | MigratedxPub5760 | |
local.identifier.citationvolume | 266 | |
local.identifier.doi | 10.1016/S0021-8693(03)00294-1 | |
local.identifier.scopusID | 2-s2.0-0042157281 | |
local.identifier.uidSubmittedBy | Migrated | |
local.type.status | Published Version |