Groups of prime-power order with a small second derived quotient

dc.contributor.authorSchneider, Csaba
dc.date.accessioned2015-12-13T22:36:47Z
dc.date.available2015-12-13T22:36:47Z
dc.date.issued2003
dc.date.updated2015-12-11T09:33:39Z
dc.description.abstractFor odd primes we prove some structure theorems for finite p-groups G, such that G″ ≠ 1 and G′/G″ = p3. Building on results of Blackburn and Hall, it is shown that γ3(G) is a maximal subgroup of G′, the group G has a central decomposition into
dc.identifier.issn0021-8693
dc.identifier.urihttp://hdl.handle.net/1885/76941
dc.publisherElsevier
dc.sourceJournal of Algebra
dc.subjectKeywords: Derived subgroup; Finite p-groups; Second derived subgroup
dc.titleGroups of prime-power order with a small second derived quotient
dc.typeJournal article
local.bibliographicCitation.issue2
local.bibliographicCitation.lastpage551
local.bibliographicCitation.startpage539
local.contributor.affiliationSchneider, Csaba, College of Physical and Mathematical Sciences, ANU
local.contributor.authoremailrepository.admin@anu.edu.au
local.contributor.authoruidSchneider, Csaba, u4291807
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.absfor010105 - Group Theory and Generalisations
local.identifier.ariespublicationMigratedxPub5760
local.identifier.citationvolume266
local.identifier.doi10.1016/S0021-8693(03)00294-1
local.identifier.scopusID2-s2.0-0042157281
local.identifier.uidSubmittedByMigrated
local.type.statusPublished Version

Downloads