Anlotinib attenuated bleomycin-induced pulmonary fibrosis via the TGF-beta 1 signalling pathway
dc.contributor.author | Ruan, Hao | |
dc.contributor.author | Lv, Ziwei | |
dc.contributor.author | Liu, Shuaishuai | |
dc.contributor.author | Zhang, Liang | |
dc.contributor.author | Huang, Kai | |
dc.contributor.author | Gao, Shaoyan | |
dc.contributor.author | Gan, Wenhua | |
dc.contributor.author | Liu, Xiaowei | |
dc.contributor.author | Zhang, Shanshan | |
dc.contributor.author | Helian, Kaiyue | |
dc.contributor.author | Li, Xiaohe | |
dc.date.accessioned | 2023-06-07T23:40:13Z | |
dc.date.issued | 2019 | |
dc.date.updated | 2022-03-27T07:32:55Z | |
dc.description.abstract | Objectives Anlotinib hydrochloride (AL3818) is a novel multitarget tyrosine kinase inhibitor which has the same targets as nintedanib, an effective drug has been approved for the treatment of idiopathic pulmonary fibrosis. Here, we examined whether anlotinib could also attenuate bleomycin-induced pulmonary fibrosis in mice and explored the antifibrosis mechanism. Methods We have evaluated the effect of anlotinib on bleomycin-induced pulmonary fibrosis in mice. Inflammatory cytokines in alveolar lavage fluid including IL-1β, IL-4, IL-6 and TNF-α were determined by ELISA. Biomarkers of oxidative stress were measured by corresponding kit. Histopathologic examination was analysed by H&E staining and immunohistochemistry. In vitro, we investigated whether anlotinib inhibited TGFβ/Smad3 and non-Smad pathways by luciferase assay or Western blotting. We also evaluated whether anlotinib inhibited TGF-β1-induced epithelial–mesenchymal transition (EMT) and promoted myofibroblast apoptosis in order to explore the possible molecular mechanism. Key findings The results indicated that anlotinib treatment remarkably attenuated inflammation, oxidative stress and pulmonary fibrosis in mouse lungs. Anlotinib could inhibit the TGF-β1 signalling pathway. Additionally, anlotinib not only profoundly inhibited TGF-β1-induced EMT in alveolar epithelial cells, but also simultaneously reduced the proliferation and promoted the apoptosis in fibroblasts. Conclusions In summary, the results suggest that anlotinib-mediated suppression of pulmonary fibrosis is related to the inhibition of TGF-β1 signalling pathway. | en_AU |
dc.description.sponsorship | This research was funded by Chinese National Major Scientific and Technological Special Project for ‘Significant New Drugs Development’ [Grant SQ2018ZX090201], the Fundamental Research Funds for the Central Universities, Nankai University and the National Key Research and Development Program of China [Grant 2018YFA0507203], and the National Natural Science Foundation of China [Grant 81871972]. | en_AU |
dc.format.mimetype | application/pdf | en_AU |
dc.identifier.issn | 0022-3573 | en_AU |
dc.identifier.uri | http://hdl.handle.net/1885/293382 | |
dc.language.iso | en_AU | en_AU |
dc.publisher | Pharmaceutical Press | en_AU |
dc.rights | © 2019 Royal Pharmaceutical Society | en_AU |
dc.source | Journal of Pharmacy and Pharmacology | en_AU |
dc.subject | anlotinib | en_AU |
dc.subject | idiopathic pulmonary fibrosis | en_AU |
dc.subject | inflammation | en_AU |
dc.subject | oxidative stress | en_AU |
dc.subject | TGF-b signalling pathway | en_AU |
dc.title | Anlotinib attenuated bleomycin-induced pulmonary fibrosis via the TGF-beta 1 signalling pathway | en_AU |
dc.type | Journal article | en_AU |
local.bibliographicCitation.issue | 1 | en_AU |
local.bibliographicCitation.lastpage | 55 | en_AU |
local.bibliographicCitation.startpage | 44 | en_AU |
local.contributor.affiliation | Ruan, Hao, Nankai University | en_AU |
local.contributor.affiliation | Lv, Ziwei, Nankai University | en_AU |
local.contributor.affiliation | Liu, Shuaishuai, Nankai University | en_AU |
local.contributor.affiliation | Zhang, Liang, Tian Jin First Central Hospital | en_AU |
local.contributor.affiliation | Huang, Kai, Nankai University | en_AU |
local.contributor.affiliation | Gao, Shaoyan, Nankai University | en_AU |
local.contributor.affiliation | Gan, Wenhua, Nankai University | en_AU |
local.contributor.affiliation | Liu, Xiaowei, Nankai University | en_AU |
local.contributor.affiliation | Zhang, Shanshan, Nankai University | en_AU |
local.contributor.affiliation | Helian, Kaiyue, College of Health and Medicine, ANU | en_AU |
local.contributor.affiliation | Li, Xiaohe, Nankai University | en_AU |
local.contributor.authoremail | repository.admin@anu.edu.au | en_AU |
local.contributor.authoruid | Helian, Kaiyue, u6017545 | en_AU |
local.description.embargo | 2099-12-31 | |
local.description.notes | Imported from ARIES | en_AU |
local.identifier.absfor | 320407 - Innate immunity | en_AU |
local.identifier.ariespublication | u5786633xPUB1554 | en_AU |
local.identifier.citationvolume | 72 | en_AU |
local.identifier.doi | 10.1111/jphp.13183 | en_AU |
local.identifier.scopusID | 2-s2.0-85074655610 | |
local.identifier.thomsonID | WOS:000492857500001 | |
local.identifier.uidSubmittedBy | u5786633 | en_AU |
local.publisher.url | https://academic.oup.com/ | en_AU |
local.type.status | Published Version | en_AU |
Downloads
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- jphp13183.pdf
- Size:
- 4.14 MB
- Format:
- Adobe Portable Document Format
- Description: