Petrogenesis of contact-style PGE mineralization in the northern lobe of the Bushveld Complex: comparison of data from the farms Rooipoort, Townlands, Drenthe and Nonnenwerth
Date
2008
Authors
Maier, Wolfgang D.
de Klerk, L
Blaine, J
Manyeruke, T
Barnes, S.-J.
Stevens, Matthew
Mavrogenes, John
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Abstract
In the present study, we document the nature of contact-style platinum-group element (PGE) mineralization along >100 km of strike in the northern lobe of the Bushveld Complex. New data from the farm Rooipoort are compared to existing data from the farms Townlands, Drenthe, and Nonnenwerth. The data indicate that the nature of the contact-style mineralization shows considerable variation along strike. In the southernmost portion of the northern Bushveld, on Rooipoort and adjoining farms, the mineralized sequence reaches a thickness of 700 m. Varied-textured gabbronorites are the most common rock type. Anorthosites and pyroxenites are less common. Chromitite stringers and xenoliths of calcsilicate and shale are largely confined to the lower part of the sequence. Layering is locally prominent and shows considerable lateral continuity. Disseminated sulfides may reach ca. 3 modal % and tend to be concentrated in chromitites and melanorites. Geochemistry indicates that the rocks can be correlated with the Upper Critical Zone. This model is supported by the fact that, in a down-dip direction, the mineralized rocks transform into the UG2-Merensky Reef interval. Between Townlands and Drenthe, the contact-mineralized sequence is thinner (up to ca. 400 m) than in the South. Chromitite stringers occur only sporadically, but ultramafic rocks (pyroxenites, serpentinites, and peridotites) are common. Xenoliths of calcsilicate, shale, and iron formation are abundant indicating significant assimilation of the floor rocks. Sulfides may locally form decimeter- to meter-sized massive lenses. PGE grades tend to be higher than elsewhere in the northern Bushveld. The compositions of the rocks show both Upper Critical Zone and Main Zone characteristics. At Nonnenwerth, the mineralized interval is up to ca. 400 m thick. It consists largely of varied-textured gabbronorites, with minor amounts of igneous ultramafic rocks and locally abundant and large xenoliths of calcsilicate. Layering is mostly weakly defined and discontinuous. Disseminated sulfides (<ca. 3 modal %) occur throughout much of the sequence. Geochemistry indicates that the rocks crystallized mainly from tholeiitic magma and thus have a Main Zone signature. The implication of our findings is that contact-style PGE mineralization in the northern lobe of the Bushveld Complex cannot be correlated with specific stratigraphic units or magma types, but that it formed in response to several different processes. At all localities, the magmas were contaminated with the floor rocks. Contamination with shale led to the addition of external sulfur to the magma, whereas contamination with dolomite may have oxidized the magma and lowered its sulfur solubility. In addition to contamination, some of the magmas, notably those of Upper Critical Zone lineage present at the south-central localities, contained entrained sulfides, which precipitated during cooling and crystallization.
Description
Keywords
Keywords: anorthosite; chemical composition; chromitite; cooling; crystallization; magma chemistry; mineralization; petrogenesis; platinum group element; precipitation (chemistry); pyroxenite; sulfide; xenolith; Africa; Benelux; Bushveld Complex; Drenthe; Eurasia; Bushveld Complex; Contact-style mineralization; Platinum-group elements; Platreef; South Africa
Citation
Collections
Source
Mineralium Deposita
Type
Journal article
Book Title
Entity type
Access Statement
License Rights
Restricted until
2037-12-31
Downloads
File
Description