A Study on Fast Gates for Large-Scale Quantum Simulation with Trapped Ions
Date
2017
Authors
Taylor, Richard
Bentley, Christopher
Pedernales, Julen S
Lamata, Lucas
Solano, Enrique
Carvalho, Andre
Hope, Joseph
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
Abstract
Large-scale digital quantum simulations require thousands of fundamental entangling gates to construct the simulated dynamics. Despite success in a variety of small-scale simulations, quantum information processing platforms have hitherto failed to demonstrate the combination of precise control and scalability required to systematically outmatch classical simulators. We analyse how fast gates could enable trapped-ion quantum processors to achieve the requisite scalability to outperform classical computers without error correction. We analyze the performance of a large-scale digital simulator, and find that fidelity of around 70% is realizable for π-pulse infidelities below 10−5 in traps subject to realistic rates of heating and dephasing. This scalability relies on fast gates: entangling gates faster than the trap period
Description
Keywords
Citation
Collections
Source
Scientific Reports
Type
Journal article
Book Title
Entity type
Access Statement
Open Access
License Rights
Creative Commons Attribution 4.0 International License
Restricted until
Downloads
File
Description