Oriented Internal Electrostatic Fields Cooperatively Promote Ground- and Excited-State Reactivity: A Case Study in Photochemical CO2 Capture

dc.contributor.authorBlyth, Mitchell
dc.contributor.authorNoble, Dr Benjamin
dc.contributor.authorRussell, Isabella
dc.contributor.authorCoote, Michelle
dc.date.accessioned2022-11-21T02:49:18Z
dc.date.issued2020
dc.date.updated2023-01-08T07:17:16Z
dc.description.abstractOriented electrostatic fields can exert catalytic effects upon both the kinetics and the thermodynamics of chemical reactions; however, the vast majority of studies thus far have focused upon ground-state chemistry and rarely consider any more than a single class of reaction. In the present study, we first use density functional theory (DFT) calculations to clarify the mechanism of CO2 storage via photochemical carboxylation of o-alkylphenyl ketones, originally proposed by Murakami et al. (J. Am. Chem. Soc.2015, 137, 14063); we then demonstrate that oriented internal electrostatic fields arising from remote charged functional groups (CFGs) can selectively and cooperatively promote both ground- and excited-state chemical reactivity at all points along the revised mechanism, in a manner otherwise difficult to access via classical substituent effects. What is particularly striking is that electrostatic field effects upon key photochemical transitions are predictably enhanced in increasingly polar solvents, thus overcoming a central limitation of the electrostatic catalysis paradigm. We explain these observations, which should be readily extendable to the ground state.
dc.description.sponsorshipWe acknowledge financial support from the Australian Research Council (ARC) Centre of Excellence for Electromaterials Science (CE140100012, FL170100041), an ARC Laureate Fellowship (to M.L.C.), and generous supercomputing time from the National Computational Infrastructure. M.T.B. acknowledges an Australian Government Research Training Program Scholarship and Dean’s Merit Scholarship in Science. We also wish to thank Vincent Doan for helpful discussions.en_AU
dc.format.mimetypeapplication/pdfen_AU
dc.identifier.issn0002-7863en_AU
dc.identifier.urihttp://hdl.handle.net/1885/280354
dc.language.isoen_AUen_AU
dc.provenancehttps://v2.sherpa.ac.uk/id/publication/7788..."The Accepted Version can be archived in a Non-Commercial Institutional Repository. 12 months embargo" from SHERPA/RoMEO site (as at 28/11/2022).
dc.publisherAmerican Chemical Society
dc.relationhttp://purl.org/au-research/grants/arc/CE140100012
dc.relationhttp://purl.org/au-research/grants/arc/FL170100041
dc.sourceJournal of the American Chemical Society
dc.titleOriented Internal Electrostatic Fields Cooperatively Promote Ground- and Excited-State Reactivity: A Case Study in Photochemical CO2 Capture
dc.typeJournal article
dcterms.accessRightsOpen Access
local.bibliographicCitation.issue1en_AU
local.bibliographicCitation.lastpage613en_AU
local.bibliographicCitation.startpage606en_AU
local.contributor.affiliationBlyth, Mitchell, College of Science, ANUen_AU
local.contributor.affiliationNoble, Benjamin, College of Science, ANUen_AU
local.contributor.affiliationRussell, Isabella, College of Science, ANUen_AU
local.contributor.affiliationCoote, Michelle, College of Science, ANUen_AU
local.contributor.authoremailu4031074@anu.edu.auen_AU
local.contributor.authoruidBlyth, Mitchell, u5810496en_AU
local.contributor.authoruidNoble, Benjamin, u4524714en_AU
local.contributor.authoruidRussell, Isabella, u6047106en_AU
local.contributor.authoruidCoote, Michelle, u4031074en_AU
local.description.notesImported from ARIESen_AU
local.identifier.absfor340306 - Polymerisation mechanismsen_AU
local.identifier.absfor340700 - Theoretical and computational chemistryen_AU
local.identifier.ariespublicationu1094150xPUB26en_AU
local.identifier.citationvolume142en_AU
local.identifier.doi10.1021/jacs.9b12186en_AU
local.identifier.thomsonIDWOS:000507144400072
local.identifier.uidSubmittedByu1094150en_AU
local.publisher.urlhttps://pubs.acs.org/en_AU
local.type.statusAccepted Versionen_AU

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Photochemical_CO2_MS.pdf
Size:
4.22 MB
Format:
Adobe Portable Document Format