The negative fixed charge of atomic layer deposited aluminium oxide - A two-dimensional SiO2/AlOx interface effect

Date

2021

Authors

Hiller, Daniel
Troger, David
Grube, Matthias
Koenig, Dirk
Mikolajick, Thomas

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Physics Publishing

Abstract

The origin of the commonly observed negative fixed charge density (Q fix) in atomic layer deposited (ALD-)aluminium oxide is still a matter of debate despite its widespread applications in (opto-)electronics, particularly in silicon photovoltaics. Q fix plays a crucial role for excellent Si surface passivation, which is mandatory for high efficiency solar cells. Often, Q fix is believed to originate from structural or compositional specifics of the first few nanometres of ALD-AlO x adjacent to the Si-interface. Here, we demonstrate that the negative Q fix is solely an interfacial effect of ALD-AlO x and the SiO2 ultra-thin film that grows inevitably during ALD on Si. Furthermore, it is proven that a second Q fix-layer exists at the upper AlO x /SiO2 interface of SiO2/AlO x /SiO2-stacks, which can carry up to a quarter of the total Q fix. We show that both SiO2/AlO x interfaces can be separated by a charge-lean material such as HfO2 (rather than AlO x ) without significant impact on the measured Q fix. This renders the location of Q fix exactly at the two-dimensional interface of SiO2 and AlO x, rather than in the near-interfacial AlO x volume. The origin of Q fix is discussed in detail. The possibility to obtain very high charge densities of around -5 × 1012 cm-2 by sub-nm thick ALD-AlO x enables advanced applications such as passivating hole-selective contacts for Si solar cells or nanoelectronic Si-doping strategies via Al-induced SiO2 modulation doping.

Description

Keywords

fixed charge density, two-dimensional layer, silicon dioxide, aluminium oxide, hafnium oxide

Citation

Source

Journal of Physics D: Applied Physics

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution licence

Restricted until