On the Sensitivity of Granger Causality to Errors-In-Variables, Linear Transformations and Subsampling

Date

2019

Authors

Anderson, Brian
Diestler, Manfred
Dufour, Jean-Marie

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Abstract

This article studies the sensitivity of Granger causality to the addition of noise, the introduction of subsampling, and the application of causal invertible filters to weakly stationary processes. Using canonical spectral factors and Wold decompositions, we give general conditions under which additive noise or filtering distorts Granger‐causal properties by inducing (spurious) Granger causality, as well as conditions under which it does not. For the errors‐in‐variables case, we give a continuity result, which implies that: a ‘small’ noise‐to‐signal ratio entails ‘small’ distortions in Granger causality. On filtering, we give general necessary and sufficient conditions under which ‘spurious’ causal relations between (vector) time series are not induced by linear transformations of the variables involved. This also yields transformations (or filters) which can eliminate Granger causality from one vector to another one. In a number of cases, we clarify results in the existing literature, with a number of calculations streamlining some existing approaches.

Description

Keywords

Citation

Source

Journal of Time Series Analysis

Type

Journal article

Book Title

Entity type

Access Statement

Open Access

License Rights

Creative Commons Attribution License

Restricted until