Dilational interpolatory inequalities

Date

2011-04

Authors

Hegland, Markus
Anderssen, Robert S.

Journal Title

Journal ISSN

Volume Title

Publisher

American Mathematical Society

Abstract

Operationally, index functions of variable Hilbert scales can be viewed as generators for families of spaces and norms and, thereby, associated scales of interpolatory inequalities. Using one-parameter families of index functions based on the dilations of given index functions, new classes of interpolatory inequalities, dilational interpolatory inequalities (DII), are constructed. They have ordinary Hilbert scales (OHS) interpolatory inequalities as special cases. They represent a precise and concise subset of variable Hilbert scales interpolatory inequalities appropriate for deriving error estimates for peak sharpening deconvolution. Only for Gaussian and Lorentzian deconvolution do the DIIs take the standard form of OHS interpolatory inequalities. For other types of deconvolution, such as a Voigt, which is the convolution of a Gaussian with a Lorentzian, the DIIs yield a new class of interpolatory inequality. An analysis of deconvolution peak sharpening is used to illustrate the role of DIIs in deriving appropriate error estimates.

Description

Keywords

Citation

Source

Mathematics of Computation

Type

Journal article

Book Title

Entity type

Access Statement

License Rights

Restricted until