A convex formulation for learning scale-free networks via submodular relaxation
dc.contributor.author | Defazio, Aaron | |
dc.contributor.author | Caetano, Tiberio | |
dc.coverage.spatial | Lake Tahoe Nevada USA | |
dc.date.accessioned | 2015-12-13T22:56:14Z | |
dc.date.created | December 3-6 2012 | |
dc.date.issued | 2012 | |
dc.date.updated | 2016-02-24T08:37:36Z | |
dc.description.abstract | A key problem in statistics and machine learning is the determination of network structure from data. We consider the case where the structure of the graph to be reconstructed is known to be scale-free. We show that in such cases it is natural to formulat | |
dc.identifier.isbn | 9781627480031 | |
dc.identifier.uri | http://hdl.handle.net/1885/82731 | |
dc.publisher | Neural Information Processing Systems Foundation | |
dc.relation.ispartofseries | Neural Information Processing Systems Conference (NIPS 2012) | |
dc.rights | Author/s retain copyright | en_AU |
dc.source | NEURAL INFORMATION PROCESSING SYSTEMS. Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012 | |
dc.source.uri | http://www.proceedings.com/17576.html | |
dc.source.uri | http://arxiv.org/abs/1407.2697 | |
dc.subject | Keywords: Convex optimization problems; Convex relaxation; Gaussian graphical models; Network structures; Scale free networks; Structured sparsities; Submodular functions; Tractable class; Convex optimization; Relaxation processes | |
dc.title | A convex formulation for learning scale-free networks via submodular relaxation | |
dc.type | Conference paper | |
dcterms.accessRights | Open Access | en_AU |
local.bibliographicCitation.lastpage | 1258 | |
local.bibliographicCitation.startpage | 1250 | |
local.contributor.affiliation | Defazio, Aaron, College of Engineering and Computer Science, ANU | |
local.contributor.affiliation | Caetano, Tiberio, College of Engineering and Computer Science, ANU | |
local.contributor.authoremail | u4406979@anu.edu.au | |
local.contributor.authoruid | Defazio, Aaron, u4406979 | |
local.contributor.authoruid | Caetano, Tiberio, u4590840 | |
local.description.notes | Imported from ARIES | |
local.description.refereed | Yes | |
local.identifier.absfor | 020100 - ASTRONOMICAL AND SPACE SCIENCES | |
local.identifier.absfor | 080104 - Computer Vision | |
local.identifier.ariespublication | f5625xPUB10941 | |
local.identifier.scopusID | 2-s2.0-84877737602 | |
local.identifier.uidSubmittedBy | f5625 | |
local.type.status | Published Version |
Downloads
Original bundle
1 - 1 of 1
Loading...
- Name:
- 01_Defazio_A_convex_formulation_for_2012.pdf
- Size:
- 385.59 KB
- Format:
- Adobe Portable Document Format