Light trapping with plasmonic particles: beyond the dipole model

dc.contributor.authorBeck, Fiona
dc.contributor.authorMokkapati, Sudha
dc.contributor.authorCatchpole, Kylie
dc.date.accessioned2015-12-10T23:12:35Z
dc.date.issued2011
dc.date.updated2016-02-24T11:03:49Z
dc.description.abstractDisk-shaped metal nanoparticles on high-index substrates can support resonant surface plasmon polariton (SPP) modes at the interface between the particle and the substrate. We demonstrate that this new conceptual model of nanoparticle scattering allows clear predictive abilities, beyond the dipole model. As would be expected from the nature of the mode, the SPP resonance is very sensitive to the area in contact with the substrate, and insensitive to particle height. We can employ this new understanding to minimise mode out-coupling and Ohmic losses in the particles. Taking into account optical losses due to parasitic absorption and outcoupling of scattered light, we estimate that an optimal array of nanoparticles on a 2 μm Si substrate can provide up to 71% of the enhancement in absorption achievable with an ideal Lambertian rear-reflector. This result compares to an estimate of 67% for conventional pyramid-type light trapping schemes.
dc.identifier.issn1094-4087
dc.identifier.urihttp://hdl.handle.net/1885/64046
dc.publisherOptical Society of America
dc.rightsAuthor/s retain copyrighten_AU
dc.sourceOptics Express
dc.subjectKeywords: Conceptual model; Dipole model; High-index substrates; Lambertian; Light-trapping; Metal nanoparticles; Ohmic loss; Optimal arrays; Plasmonic particles; Predictive abilities; Resonant surfaces; Scattered light; Si substrates; Electromagnetic wave polariza
dc.titleLight trapping with plasmonic particles: beyond the dipole model
dc.typeJournal article
dcterms.accessRightsOpen Accessen_AU
local.bibliographicCitation.issue25
local.bibliographicCitation.lastpage25241
local.bibliographicCitation.startpage25230
local.contributor.affiliationBeck, Fiona, College of Engineering and Computer Science, ANU
local.contributor.affiliationMokkapati, Sudha, College of Engineering and Computer Science, ANU
local.contributor.affiliationCatchpole, Kylie, College of Engineering and Computer Science, ANU
local.contributor.authoremailu4354306@anu.edu.au
local.contributor.authoruidBeck, Fiona, u4354306
local.contributor.authoruidMokkapati, Sudha, u2576041
local.contributor.authoruidCatchpole, Kylie, u9612096
local.description.notesImported from ARIES
local.identifier.absfor090605 - Photodetectors, Optical Sensors and Solar Cells
local.identifier.absseo850504 - Solar-Photovoltaic Energy
local.identifier.ariespublicationu4334215xPUB880
local.identifier.citationvolume19
local.identifier.scopusID2-s2.0-82955226179
local.identifier.thomsonID000297702400038
local.identifier.uidSubmittedByu4334215
local.type.statusPublished Version

Downloads

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
01_Beck_Light_trapping_with_plasmonic_2011.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format