Skip navigation
Skip navigation

Multiple influences on regolith characteristics from continental-scale geophysical and mineralogical remote sensing data using Self-Organizing Maps

Cracknell, M.J.; Reading, Anya M; De Caritat, Patrice

Description

We investigate the characteristics of regolith through the application of statistical learning to diverse layers of terrestrial, continental-scale remote sensing data. This combination allows us to explore the multiple influences of bedrock, climate, biota, landscape and time on regolith development and properties: an interdisciplinary geoscience modeling problem. From a wide variety of available data for Australia, we select remotely sensed geophysical, geomorphological and mineralogical...[Show more]

dc.contributor.authorCracknell, M.J.
dc.contributor.authorReading, Anya M
dc.contributor.authorDe Caritat, Patrice
dc.date.accessioned2016-02-24T22:41:35Z
dc.identifier.issn0034-4257
dc.identifier.urihttp://hdl.handle.net/1885/98747
dc.description.abstractWe investigate the characteristics of regolith through the application of statistical learning to diverse layers of terrestrial, continental-scale remote sensing data. This combination allows us to explore the multiple influences of bedrock, climate, biota, landscape and time on regolith development and properties: an interdisciplinary geoscience modeling problem. From a wide variety of available data for Australia, we select remotely sensed geophysical, geomorphological and mineralogical inputs with good spatial coverage. We use Self-Organizing Maps (SOM), a topologically constrained unsupervised statistical learning algorithm, to characterize the geophysical and mineralogical signatures of regolith and bedrock. Regolith materials cover more than 80% of the Australian continent, range in age from Precambrian to Quaternary and vary in thickness from less than a meter to more than a kilometer. The diversity of regolith cover type and character across Australia provides an opportunity to demonstrate knowledge discovery from remote sensing data. The outputs of our SOM analysis are combined with ground observations from locations showing naturally occurring anomalous concentrations of nickel, tin and uranium. We identify a minimum number of natural clusters indicating subtle but significant differences in regolith and bedrock mineralization characteristics. Our results show that SOM identifies spatially contiguous regions representing unique regolith and bedrock materials. In the Yilgarn Craton we observe key differences in landscape character, density of the crust, and relative abundance of radioactive elements and alumino-silicate and ferric oxide minerals. These properties discriminate between nickel-prospective residual deeply weathered regolith formed on mafic and/or ultramafic bedrock and uranium-prospective Cainozoic paleochannels containing felsic bedrock source materials. National-scale data are publicly available for many continental regions, as in the Australian example, and our approach has general applicability. We demonstrate that remote sensing data may be used to understand the regolith, revealing the interplay between environmental history and bedrock character at regional scales, and differences between residual and transported regolith, provenance of source materials and their relative ages.
dc.publisherElsevier
dc.sourceRemote Sensing of Environment
dc.titleMultiple influences on regolith characteristics from continental-scale geophysical and mineralogical remote sensing data using Self-Organizing Maps
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume165
dc.date.issued2015
local.identifier.absfor040499 - Geophysics not elsewhere classified
local.identifier.absfor091404 - Mineral Processing/Beneficiation
local.identifier.ariespublicationU3488905xPUB7466
local.type.statusPublished Version
local.contributor.affiliationCracknell, M.J., University of Tasmania
local.contributor.affiliationReading, Anya M, University of Tasmania
local.contributor.affiliationDe Caritat, Patrice, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.startpage86
local.bibliographicCitation.lastpage99
local.identifier.doi10.1016/j.rse.2015.04.029
dc.date.updated2016-02-24T10:13:22Z
local.identifier.scopusID2-s2.0-84929583222
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Cracknell_Multiple_influences_on_2015.pdf5.49 MBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator