Skip navigation
Skip navigation

Second-order subelliptic operators on Lie groups III: H\older continuous coefficients

Robinson, Derek; ter Elst, A F M

Description

Let G be a connected Lie group with Lie algebra g and a1, . . . , ad′ an algebraic basis of g. Further let Ai denote the generators of left translations, acting on the Lp-spaces Lp(G ; dg) formed with left Haar measure dg, in the directions ai. We consi

dc.contributor.authorRobinson, Derek
dc.contributor.authorter Elst, A F M
dc.date.accessioned2015-12-13T23:41:30Z
dc.identifier.issn0944-2669
dc.identifier.urihttp://hdl.handle.net/1885/94936
dc.description.abstractLet G be a connected Lie group with Lie algebra g and a1, . . . , ad′ an algebraic basis of g. Further let Ai denote the generators of left translations, acting on the Lp-spaces Lp(G ; dg) formed with left Haar measure dg, in the directions ai. We consi
dc.publisherSpringer
dc.sourceCalculus of Variations and Partial Differential Equations
dc.titleSecond-order subelliptic operators on Lie groups III: H\older continuous coefficients
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume8
dc.date.issued1999
local.identifier.absfor010105 - Group Theory and Generalisations
local.identifier.ariespublicationMigratedxPub24648
local.type.statusPublished Version
local.contributor.affiliationRobinson, Derek, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationter Elst, A F M, Eindhoven University of Technology
local.description.embargo2037-12-31
local.bibliographicCitation.issue4
local.bibliographicCitation.startpage327
local.bibliographicCitation.lastpage363
dc.date.updated2015-12-12T09:32:47Z
local.identifier.scopusID2-s2.0-0007389789
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Robinson_Second-order_subelliptic_1999.pdf255.7 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator