Skip navigation
Skip navigation

Proficient presentations on direct products of finite groups

Kovacs, L; Gruenberg, K

Description

Let G be a finite group, F a free group of finite rank, R the kernel of a homomorphism φ of F onto G, and let [R, F], [R, R] denote mutual commutator subgroups. Conjugation in F yields a G-module structure on R/[R, R]; let dG(R/[R, R]) be the number of e

dc.contributor.authorKovacs, L
dc.contributor.authorGruenberg, K
dc.date.accessioned2015-12-13T23:41:29Z
dc.date.available2015-12-13T23:41:29Z
dc.identifier.issn0004-9727
dc.identifier.urihttp://hdl.handle.net/1885/94926
dc.description.abstractLet G be a finite group, F a free group of finite rank, R the kernel of a homomorphism φ of F onto G, and let [R, F], [R, R] denote mutual commutator subgroups. Conjugation in F yields a G-module structure on R/[R, R]; let dG(R/[R, R]) be the number of e
dc.publisherAustralian Mathematics Publishing Association
dc.sourceBulletin of the Australian Mathematical Society
dc.titleProficient presentations on direct products of finite groups
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume60
dc.date.issued1999
local.identifier.absfor010105 - Group Theory and Generalisations
local.identifier.ariespublicationMigratedxPub24636
local.type.statusPublished Version
local.contributor.affiliationKovacs, L, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationGruenberg, K, Queen Mary and Westfield College
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage177
local.bibliographicCitation.lastpage189
dc.date.updated2015-12-12T09:32:41Z
local.identifier.scopusID2-s2.0-0033212038
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator