Skip navigation
Skip navigation

A spectral multiplier theorem for a sublaplacian on SU(2)

Cowling, Michael; Sikora, Adam

Description

We prove a Hörmander-type spectral multiplier theorem for a sublaplacian on SU(2), with critical index determined by the Euclidean dimension of the group. This result is the analogue for SU(2) of the result for the Heisenberg group obtained by D. Müller

dc.contributor.authorCowling, Michael
dc.contributor.authorSikora, Adam
dc.date.accessioned2015-12-13T23:26:12Z
dc.identifier.issn0025-5874
dc.identifier.urihttp://hdl.handle.net/1885/92729
dc.description.abstractWe prove a Hörmander-type spectral multiplier theorem for a sublaplacian on SU(2), with critical index determined by the Euclidean dimension of the group. This result is the analogue for SU(2) of the result for the Heisenberg group obtained by D. Müller
dc.publisherSpringer
dc.sourceMathematische Zeitschrift
dc.titleA spectral multiplier theorem for a sublaplacian on SU(2)
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume238
dc.date.issued2001
local.identifier.absfor010105 - Group Theory and Generalisations
local.identifier.absfor010106 - Lie Groups, Harmonic and Fourier Analysis
local.identifier.ariespublicationMigratedxPub25927
local.type.statusPublished Version
local.contributor.affiliationCowling, Michael, University of New South Wales
local.contributor.affiliationSikora, Adam, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage36
dc.date.updated2015-12-12T09:45:48Z
local.identifier.scopusID2-s2.0-0035537747
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Cowling_A_spectral_multiplier_theorem_2001.pdf278.73 kBAdobe PDF    Request a copy
02_Cowling_A_spectral_multiplier_theorem_2001.pdf296.31 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator