Skip navigation
Skip navigation

Cycles Through 23 Vertices in 3-Connected Cubic Planar Graphs

Aldred, R E L; Baudin, S; Holton, D A; McKay, Brendan

Description

We establish that if A is a set of at most 23 vertices in a 3-connected cubic planar graph G, then there is a cycle in G containing A. This result is sharp.

dc.contributor.authorAldred, R E L
dc.contributor.authorBaudin, S
dc.contributor.authorHolton, D A
dc.contributor.authorMcKay, Brendan
dc.date.accessioned2015-12-13T23:23:11Z
dc.identifier.issn0911-0119
dc.identifier.urihttp://hdl.handle.net/1885/91794
dc.description.abstractWe establish that if A is a set of at most 23 vertices in a 3-connected cubic planar graph G, then there is a cycle in G containing A. This result is sharp.
dc.publisherSpringer
dc.sourceGraphs and Combinatorics
dc.titleCycles Through 23 Vertices in 3-Connected Cubic Planar Graphs
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume15
dc.date.issued1999
local.identifier.absfor010406 - Stochastic Analysis and Modelling
local.identifier.ariespublicationMigratedxPub22662
local.type.statusPublished Version
local.contributor.affiliationAldred, R E L, University of Otago
local.contributor.affiliationBaudin, S, University of Otago
local.contributor.affiliationHolton, D A, University of Otago
local.contributor.affiliationMcKay, Brendan, College of Engineering and Computer Science, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.startpage373
local.bibliographicCitation.lastpage376
dc.date.updated2015-12-12T09:14:21Z
local.identifier.scopusID2-s2.0-0043253140
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Aldred_Cycles_Through_23_Vertices_in_1999.pdf58.05 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator