Skip navigation
Skip navigation

Motion of hypersurfaces by Gauss curvature

Andrews, Benjamin

Description

We consider n-dimensional convex Euclidean hypersurfaces moving with normal velocity proportional to a positive power α of the Gauss curvature. We prove that hypersurfaces contract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we also prove t

dc.contributor.authorAndrews, Benjamin
dc.date.accessioned2015-12-13T23:21:02Z
dc.date.available2015-12-13T23:21:02Z
dc.identifier.issn0030-8730
dc.identifier.urihttp://hdl.handle.net/1885/90995
dc.description.abstractWe consider n-dimensional convex Euclidean hypersurfaces moving with normal velocity proportional to a positive power α of the Gauss curvature. We prove that hypersurfaces contract to points in finite time, and for α ∈ (1/(n + 2], 1/n] we also prove t
dc.publisherUniversity of California
dc.sourcePacific Journal of Mathematics
dc.titleMotion of hypersurfaces by Gauss curvature
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume195
dc.date.issued2000
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationMigratedxPub21499
local.type.statusPublished Version
local.contributor.affiliationAndrews, Benjamin, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage34
dc.date.updated2015-12-12T09:05:20Z
local.identifier.scopusID2-s2.0-0012854743
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator