Skip navigation
Skip navigation

Pluripolarity of sets with small Hausdorff measure

Labutin, Denis

Description

We show that any set E ⊂ Cn, n ≥ 2, with finite Hausdorff measure Λ(log 1/r)-n (E) < + ∞ is pluripolar. The result is sharp with respect to the measuring function. The new idea in the proof is to combine a construction from potential theory, relate

dc.contributor.authorLabutin, Denis
dc.date.accessioned2015-12-13T23:20:46Z
dc.identifier.issn0025-2611
dc.identifier.urihttp://hdl.handle.net/1885/90858
dc.description.abstractWe show that any set E ⊂ Cn, n ≥ 2, with finite Hausdorff measure Λ(log 1/r)-n (E) < + ∞ is pluripolar. The result is sharp with respect to the measuring function. The new idea in the proof is to combine a construction from potential theory, relate
dc.publisherSpringer
dc.sourceManuscripta Mathematica
dc.titlePluripolarity of sets with small Hausdorff measure
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume102
dc.date.issued2000
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationMigratedxPub21342
local.type.statusPublished Version
local.contributor.affiliationLabutin, Denis, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage163
local.bibliographicCitation.lastpage167
dc.date.updated2015-12-12T09:04:28Z
local.identifier.scopusID2-s2.0-0034407782
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Labutin_Pluripolarity_of_sets_with_2000.pdf46.48 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator