Skip navigation
Skip navigation

An interior curvature bound for hypersurfaces of prescribed $k$-th mean curvature

Urbas, John

Description

We derive an interior curvature bound for k-admissible hypersurfaces in ℝn+1 of prescribed k-th mean curvature in terms of the Lp norm of the mean curvature for some p > kn/2. Examples show that in the cases k ≧ 3 such a bound is generally false if p

dc.contributor.authorUrbas, John
dc.date.accessioned2015-12-13T23:18:43Z
dc.date.available2015-12-13T23:18:43Z
dc.identifier.issn0075-4102
dc.identifier.urihttp://hdl.handle.net/1885/90313
dc.description.abstractWe derive an interior curvature bound for k-admissible hypersurfaces in ℝn+1 of prescribed k-th mean curvature in terms of the Lp norm of the mean curvature for some p > kn/2. Examples show that in the cases k ≧ 3 such a bound is generally false if p
dc.publisherWalter de Gruyter
dc.sourceJournal fur Reine und Angewandte Mathematik
dc.titleAn interior curvature bound for hypersurfaces of prescribed $k$-th mean curvature
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume519
dc.date.issued2000
local.identifier.absfor010102 - Algebraic and Differential Geometry
local.identifier.ariespublicationMigratedxPub20640
local.type.statusPublished Version
local.contributor.affiliationUrbas, John, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.startpage41
local.bibliographicCitation.lastpage57
dc.date.updated2015-12-12T08:58:05Z
local.identifier.scopusID2-s2.0-0034344456
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator