Skip navigation
Skip navigation

Some interior regularity results for solutions of Hessian equations

Urbas, John

Description

We prove monotonicity formulae related to degenerate k-Hessian equations which yield Morrey type estimates for certain integrands involving the second derivatives of the solution. In the special case k = 2 we deduce that weak solutions in W2,p(Ω), p > n

dc.contributor.authorUrbas, John
dc.date.accessioned2015-12-13T23:18:43Z
dc.identifier.issn0944-2669
dc.identifier.urihttp://hdl.handle.net/1885/90312
dc.description.abstractWe prove monotonicity formulae related to degenerate k-Hessian equations which yield Morrey type estimates for certain integrands involving the second derivatives of the solution. In the special case k = 2 we deduce that weak solutions in W2,p(Ω), p > n
dc.publisherSpringer
dc.sourceCalculus of Variations and Partial Differential Equations
dc.titleSome interior regularity results for solutions of Hessian equations
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume11
dc.date.issued2000
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationMigratedxPub20639
local.type.statusPublished Version
local.contributor.affiliationUrbas, John, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue1
local.bibliographicCitation.startpage1
local.bibliographicCitation.lastpage31
dc.date.updated2015-12-12T08:58:05Z
local.identifier.scopusID2-s2.0-0013090015
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Urbas_Some_interior_regularity_2000.pdf225.15 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator