Skip navigation
Skip navigation

Microscopic expressions for the thermodynamic temperature

Jepps, Owen; Ayton, Gary; Evans, Denis

Description

We show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble averages give the thermodynamic temperature. We describe conditions for the validity of these functions in periodic boundary systems and the molecular

dc.contributor.authorJepps, Owen
dc.contributor.authorAyton, Gary
dc.contributor.authorEvans, Denis
dc.date.accessioned2015-12-13T23:15:42Z
dc.date.available2015-12-13T23:15:42Z
dc.identifier.issn1063-651X
dc.identifier.urihttp://hdl.handle.net/1885/89015
dc.description.abstractWe show that arbitrary phase space vector fields can be used to generate phase functions whose ensemble averages give the thermodynamic temperature. We describe conditions for the validity of these functions in periodic boundary systems and the molecular
dc.publisherAmerican Physical Society
dc.sourcePhysical Review E
dc.subjectKeywords: Boundary conditions; Computer simulation; Kinetic energy; Molecular dynamics; Particles (particulate matter); Temperature measurement; Thermal effects; Thermodynamic temperature; Phase equilibria
dc.titleMicroscopic expressions for the thermodynamic temperature
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume62
dc.date.issued2000
local.identifier.absfor030602 - Chemical Thermodynamics and Energetics
local.identifier.ariespublicationMigratedxPub18911
local.type.statusPublished Version
local.contributor.affiliationJepps, Owen, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationAyton, Gary, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationEvans, Denis, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.startpage4757
local.bibliographicCitation.lastpage4763
dc.date.updated2015-12-12T08:44:43Z
local.identifier.scopusID2-s2.0-0034295613
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator