Skip navigation
Skip navigation

On the Jager-Kaul theorem concerning harmonic maps

Hong, M-C


In 1983, Jäger and Kaul proved that the equator map u*(x) = (x/|x|, 0) : Bn → Sn is unstable for 3 ≤ n ≤ 6 and a minimizer for the energy functional E(u, Bn) = ∫Bn |∇u|2dx in the class H1,2(Bn, Sn) with u = u* on ∂ Bn when n ≥ 7. In this pa

CollectionsANU Research Publications
Date published: 2000
Type: Journal article
Source: Annales de l Institut Henri Poincare


File Description SizeFormat Image
01_Hong_On_the_Jager-Kaul_theorem_2000.pdf85.02 kBAdobe PDF    Request a copy

Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator