Skip navigation
Skip navigation

Triviality of the functor Coker(K1(F)->K1(D)) for division algebras

Hazrat, Roozbah; Vishne, Uzi

Description

Let D be a division algebra with center F. Consider the group CK 1(D) = D*/F*D′ where D* is the group of invertible elements of D and D′ is its commutator subgroup. In this note we shall show that, assuming a division algebra D is a product of cyclic

dc.contributor.authorHazrat, Roozbah
dc.contributor.authorVishne, Uzi
dc.date.accessioned2015-12-13T23:05:07Z
dc.identifier.issn0092-7872
dc.identifier.urihttp://hdl.handle.net/1885/85387
dc.description.abstractLet D be a division algebra with center F. Consider the group CK 1(D) = D*/F*D′ where D* is the group of invertible elements of D and D′ is its commutator subgroup. In this note we shall show that, assuming a division algebra D is a product of cyclic
dc.publisherMarcel Dekker Inc.
dc.sourceCommunications in Algebra
dc.subjectKeywords: Division algebras; Reduced K-theory
dc.titleTriviality of the functor Coker(K1(F)->K1(D)) for division algebras
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume33
dc.date.issued2005
local.identifier.absfor010101 - Algebra and Number Theory
local.identifier.ariespublicationMigratedxPub13760
local.type.statusPublished Version
local.contributor.affiliationHazrat, Roozbah, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationVishne, Uzi, Yale University
local.description.embargo2037-12-31
local.bibliographicCitation.startpage1427
local.bibliographicCitation.lastpage1435
local.identifier.doi10.1081/AGB-200060525
dc.date.updated2015-12-12T07:58:54Z
local.identifier.scopusID2-s2.0-27844474133
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Hazrat_Triviality_of_the_functor_2005.pdf137.23 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  22 January 2019/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator