Skip navigation
Skip navigation

The discrete Douglas problem: convergence results

Pozzi, Paola

Description

We solve the problem of finding and justifying an optimal fully discrete finite-element procedure for approximating annulus-like, possibly unstable, minimal surfaces. In a previous paper we introduced the general framework, obtained some preliminary estimates, developed the ideas used for the algorithm, and gave numerical results. In this paper we prove convergence estimates.

dc.contributor.authorPozzi, Paola
dc.date.accessioned2015-12-13T23:04:08Z
dc.identifier.issn0272-4979
dc.identifier.urihttp://hdl.handle.net/1885/85230
dc.description.abstractWe solve the problem of finding and justifying an optimal fully discrete finite-element procedure for approximating annulus-like, possibly unstable, minimal surfaces. In a previous paper we introduced the general framework, obtained some preliminary estimates, developed the ideas used for the algorithm, and gave numerical results. In this paper we prove convergence estimates.
dc.publisherOxford University Press
dc.sourceIMA Journal of Numerical Analysis
dc.subjectKeywords: Douglas problem; Finite elements; Minimal surfaces; Order of convergence
dc.titleThe discrete Douglas problem: convergence results
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume25
dc.date.issued2005
local.identifier.absfor010301 - Numerical Analysis
local.identifier.ariespublicationMigratedxPub13520
local.type.statusPublished Version
local.contributor.affiliationPozzi, Paola, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage337
local.bibliographicCitation.lastpage378
local.identifier.doi10.1093/imanum/drh019
dc.date.updated2015-12-12T07:53:40Z
local.identifier.scopusID2-s2.0-25844514747
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Pozzi_The_discrete_Douglas_problem:_2005.pdf348.04 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator