Div-curl type theorems on Lipschitz domains
Description
For Lipschitz domains of ℝn we prove div-curl type theorems, which are extensions to domains of the Div-Curl Theorem on ℝn by Coifman, Lions, Meyer and Semmes. Applying the div-curl type theorems we give decompositions of Hardy spaces on domains.
dc.contributor.author | Lou, Z | |
---|---|---|
dc.date.accessioned | 2015-12-13T23:04:05Z | |
dc.identifier.issn | 0004-9727 | |
dc.identifier.uri | http://hdl.handle.net/1885/85210 | |
dc.description.abstract | For Lipschitz domains of ℝn we prove div-curl type theorems, which are extensions to domains of the Div-Curl Theorem on ℝn by Coifman, Lions, Meyer and Semmes. Applying the div-curl type theorems we give decompositions of Hardy spaces on domains. | |
dc.publisher | Australian Mathematics Publishing Association | |
dc.source | Bulletin of the Australian Mathematical Society | |
dc.title | Div-curl type theorems on Lipschitz domains | |
dc.type | Journal article | |
local.description.notes | Imported from ARIES | |
local.description.refereed | Yes | |
local.identifier.citationvolume | 72 | |
dc.date.issued | 2005 | |
local.identifier.absfor | 010110 - Partial Differential Equations | |
local.identifier.ariespublication | MigratedxPub13484 | |
local.type.status | Published Version | |
local.contributor.affiliation | Lou, Z, College of Physical and Mathematical Sciences, ANU | |
local.description.embargo | 2037-12-31 | |
local.bibliographicCitation.issue | 1 | |
local.bibliographicCitation.startpage | 31 | |
local.bibliographicCitation.lastpage | 38 | |
dc.date.updated | 2015-12-12T07:53:13Z | |
local.identifier.scopusID | 2-s2.0-27144546046 | |
Collections | ANU Research Publications |
Download
File | Description | Size | Format | Image |
---|---|---|---|---|
01_Lou_Div-curl_type_theorems_on_2005.pdf | 738.17 kB | Adobe PDF | Request a copy |
Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.
Updated: 17 November 2022/ Responsible Officer: University Librarian/ Page Contact: Library Systems & Web Coordinator