Skip navigation
Skip navigation

Div-curl type theorems on Lipschitz domains

Lou, Z

Description

For Lipschitz domains of ℝn we prove div-curl type theorems, which are extensions to domains of the Div-Curl Theorem on ℝn by Coifman, Lions, Meyer and Semmes. Applying the div-curl type theorems we give decompositions of Hardy spaces on domains.

dc.contributor.authorLou, Z
dc.date.accessioned2015-12-13T23:04:05Z
dc.identifier.issn0004-9727
dc.identifier.urihttp://hdl.handle.net/1885/85210
dc.description.abstractFor Lipschitz domains of ℝn we prove div-curl type theorems, which are extensions to domains of the Div-Curl Theorem on ℝn by Coifman, Lions, Meyer and Semmes. Applying the div-curl type theorems we give decompositions of Hardy spaces on domains.
dc.publisherAustralian Mathematics Publishing Association
dc.sourceBulletin of the Australian Mathematical Society
dc.titleDiv-curl type theorems on Lipschitz domains
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume72
dc.date.issued2005
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationMigratedxPub13484
local.type.statusPublished Version
local.contributor.affiliationLou, Z, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue1
local.bibliographicCitation.startpage31
local.bibliographicCitation.lastpage38
dc.date.updated2015-12-12T07:53:13Z
local.identifier.scopusID2-s2.0-27144546046
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Lou_Div-curl_type_theorems_on_2005.pdf738.17 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator