Skip navigation
Skip navigation

Quantum Chemical Mapping of Initialization Processes in RAFT Polymerization

Coote, Michelle; Izgorodina, Ekaterina; Krenske, Elizabeth; Busch, Markus; Barner-Kowollik, Christopher

Description

We present the first ab initio simulation of a reversible addition fragmentation chain transfer (RAFT) polymerization. Using ab initio molecular orbital theory, we calculate the equilibrium constants for the first eight addition-fragmentation steps in the cyanoisopropyl dithiobenzoate-mediated polymerization of styrene. We then simulate the concentration profiles for the RAFT agent, and its unimeric and dimeric adducts, assuming standard experimental parameters for styrene homopolymerization...[Show more]

dc.contributor.authorCoote, Michelle
dc.contributor.authorIzgorodina, Ekaterina
dc.contributor.authorKrenske, Elizabeth
dc.contributor.authorBusch, Markus
dc.contributor.authorBarner-Kowollik, Christopher
dc.date.accessioned2015-12-13T23:02:33Z
dc.identifier.issn1022-1336
dc.identifier.urihttp://hdl.handle.net/1885/84945
dc.description.abstractWe present the first ab initio simulation of a reversible addition fragmentation chain transfer (RAFT) polymerization. Using ab initio molecular orbital theory, we calculate the equilibrium constants for the first eight addition-fragmentation steps in the cyanoisopropyl dithiobenzoate-mediated polymerization of styrene. We then simulate the concentration profiles for the RAFT agent, and its unimeric and dimeric adducts, assuming standard experimental parameters for styrene homopolymerization and the addition of the styryl radical to the RAFT agent. The simulated data show excellent agreement with published experimental data, high-lighting the accuracy of quantum chemistry. In contrast, the currently used chain-length independent models fail to describe even the qualitative trends in the data, regardless of whether the fragmentation reaction is assumed to be fast or slow. The calculated chain-length dependent equilibrium constants are large, in agreement with the earlier proposed slow fragmentation model.
dc.publisherWiley-VCH Verlag GMBH
dc.sourceMacromolecular Rapid Communications
dc.subjectKeywords: Computer simulation; Concentration (process); Data reduction; Homopolymerization; Mapping; Molecular orientation; Styrene; Equilibrium constants; Molecular orbital theory; Quantum chemical mapping; Reversible addition fragmentation chain transfer (RAFT); Ab initio calculations; Chain initialization; Polymerization mechanism and kinetics; Reversible addition fragmentation chain transfer (RAFT)
dc.titleQuantum Chemical Mapping of Initialization Processes in RAFT Polymerization
dc.typeJournal article
local.description.notesImported from ARIES
local.description.refereedYes
local.identifier.citationvolume27
dc.date.issued2006
local.identifier.absfor030305 - Polymerisation Mechanisms
local.identifier.absfor030799 - Theoretical and Computational Chemistry not elsewhere classified
local.identifier.ariespublicationMigratedxPub13164
local.type.statusPublished Version
local.contributor.affiliationCoote, Michelle, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationIzgorodina, Ekaterina, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationKrenske, Elizabeth, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationBusch, Markus, Darmstadt University of Technology
local.contributor.affiliationBarner-Kowollik, Christopher, University of New South Wales
local.description.embargo2037-12-31
local.bibliographicCitation.issue13
local.bibliographicCitation.startpage1015
local.bibliographicCitation.lastpage1022
local.identifier.doi10.1002/marc.200600170
dc.date.updated2015-12-12T07:47:59Z
local.identifier.scopusID2-s2.0-33746041072
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Coote_Quantum_Chemical_Mapping_of_2006.pdf179.22 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator