Skip navigation
Skip navigation

Additive models in high dimensions

Hegland, Markus; Pestov, Vladimir

Description

Additive decompositions are established tools in nonparametric statistics and effectively address the curse of dimensionality. For the analysis of the approximation properties of additive decompositions, we introduce a novel framework which includes the number of variables as an ingredient in the definition of the smoothness of the underlying functions. This approach is motivated by the effect of concentration of measure in high dimensional spaces. Using the resulting smoothness conditions,...[Show more]

CollectionsANU Research Publications
Date published: 2005
Type: Journal article
URI: http://hdl.handle.net/1885/83674
Source: ANZIAM Journal

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  23 August 2018/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator