Skip navigation
Skip navigation

The Sobolev inequality for complex Hessian equations

Zhou, Bin

Description

In this paper, we study the complex Hessian equations by an gradient flow method. We prove a Sobolev inequality for k-plurisubharmonic functions analogous to that for real Hessian equations (Wang in Indiana Univ Math J 43:25-54, 1994; Lecture Notes in Mat

dc.contributor.authorZhou, Bin
dc.date.accessioned2015-12-13T22:52:15Z
dc.identifier.issn0025-5874
dc.identifier.urihttp://hdl.handle.net/1885/81483
dc.description.abstractIn this paper, we study the complex Hessian equations by an gradient flow method. We prove a Sobolev inequality for k-plurisubharmonic functions analogous to that for real Hessian equations (Wang in Indiana Univ Math J 43:25-54, 1994; Lecture Notes in Mat
dc.publisherSpringer
dc.sourceMathematische Zeitschrift
dc.titleThe Sobolev inequality for complex Hessian equations
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume274
dc.date.issued2013
local.identifier.absfor010100 - PURE MATHEMATICS
local.identifier.ariespublicationf5625xPUB9768
local.type.statusPublished Version
local.contributor.affiliationZhou, Bin, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue1-Feb
local.bibliographicCitation.startpage531
local.bibliographicCitation.lastpage549
local.identifier.doi10.1007/s00209-012-1084-y
dc.date.updated2015-12-11T10:50:05Z
local.identifier.scopusID2-s2.0-84877737027
local.identifier.thomsonID000319004900029
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Zhou_The_Sobolev_inequality_for_2013.pdf250.99 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator