Skip navigation
Skip navigation

Invariants for Legendrian knots in lens spaces

Licata, Joan

Description

In this paper, we define invariants for primitive Legendrian knots in lens spaces L(p,q), q ≠= 1. The main invariant is a differential graded algebra (A, η) which is computed from a labeled Lagrangian projection of the pair (L(p, q),K). This invariant

dc.contributor.authorLicata, Joan
dc.date.accessioned2015-12-13T22:41:26Z
dc.date.available2015-12-13T22:41:26Z
dc.identifier.issn0219-1997
dc.identifier.urihttp://hdl.handle.net/1885/78506
dc.description.abstractIn this paper, we define invariants for primitive Legendrian knots in lens spaces L(p,q), q ≠= 1. The main invariant is a differential graded algebra (A, η) which is computed from a labeled Lagrangian projection of the pair (L(p, q),K). This invariant
dc.publisherWorld Scientific Publishing Company
dc.sourceCommunications in Contemporary Mathematics
dc.subjectKeywords: differential graded algebra; Legendrian knot; lens space
dc.titleInvariants for Legendrian knots in lens spaces
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume13
dc.date.issued2011
local.identifier.absfor010103 - Category Theory, K Theory, Homological Algebra
local.identifier.ariespublicationf5625xPUB7138
local.type.statusPublished Version
local.contributor.affiliationLicata, Joan, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.issue1
local.bibliographicCitation.startpage91
local.bibliographicCitation.lastpage121
local.identifier.doi10.1142/S0219199711004178
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
dc.date.updated2016-02-24T09:33:11Z
local.identifier.scopusID2-s2.0-79951907635
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator