Skip navigation
Skip navigation

Atomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures

de la Mata, María; César, Magén; Caroff, Philippe; Jordi, Arbiol

Description

Combination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning...[Show more]

dc.contributor.authorde la Mata, María
dc.contributor.authorCésar, Magén
dc.contributor.authorCaroff, Philippe
dc.contributor.authorJordi, Arbiol
dc.date.accessioned2015-12-13T22:34:12Z
dc.identifier.issn1530-6984
dc.identifier.urihttp://hdl.handle.net/1885/76020
dc.description.abstractCombination of mismatched materials in semiconductor nanowire heterostructures offers a freedom of bandstructure engineering that is impossible in standard planar epitaxy. Nevertheless, the presence of strain and structural defects directly control the optoelectronic properties of these nanomaterials. Understanding with atomic accuracy how mismatched heterostructures release or accommodate strain, therefore, is highly desirable. By using atomic resolution high angle annular dark field scanning transmission electron microscopy combined with geometrical phase analyses and computer simulations, we are able to establish the relaxation mechanisms (including both elastic and plastic deformations) to release the mismatch strain in axial nanowire heterostructures. Formation of misfit dislocations, diffusion of atomic species, polarity transfer, and induced structural transformations are studied with atomic resolution at the intermediate ternary interfaces. Two nanowire heterostructure systems with promising applications (InAs/InSb and GaAs/GaSb) have been selected as key examples.
dc.publisherAmerican Chemical Society
dc.sourceNano Letters
dc.titleAtomic scale strain relaxation in axial semiconductor III-V nanowire heterostructures
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume14
dc.date.issued2014
local.identifier.absfor020504 - Photonics, Optoelectronics and Optical Communications
local.identifier.absfor091203 - Compound Semiconductors
local.identifier.absfor100706 - Nanofabrication, Growth and Self Assembly
local.identifier.ariespublicationU3488905xPUB4933
local.type.statusPublished Version
local.contributor.affiliationde la Mata, María, Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC
local.contributor.affiliationCésar, Magén, Instituto de Nanociencia de Aragon (INA) -ARAID
local.contributor.affiliationCaroff, Philippe, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationJordi, Arbiol, itució Catalana de Recerca i Estudis Avançats (ICREA)
local.description.embargo2037-12-31
local.bibliographicCitation.issue11
local.bibliographicCitation.startpage6614
local.bibliographicCitation.lastpage6620
local.identifier.doi10.1021/nl503273j
local.identifier.absseo970102 - Expanding Knowledge in the Physical Sciences
dc.date.updated2015-12-11T09:18:31Z
local.identifier.scopusID2-s2.0-84909986927
local.identifier.thomsonID000345723800092
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_de la Mata_Atomic_scale_strain_relaxation_2014.pdf5.56 MBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator