Skip navigation
Skip navigation

The Riesz transform for homogeneous Schrdinger operators on metric cones

Hassell, Andrew; Lin, Peijie

Description

We consider Schrödinger operators on a metric cone whose cross section is a closed Riemannian manifold (Y, h) of dimension d-1 ≥ 2. Thus the metric on the cone M = (0,∞)r × Y is dr2+r 2h. Let Δ be the Friedrichs Laplacian on M and let V0 be a smoot

dc.contributor.authorHassell, Andrew
dc.contributor.authorLin, Peijie
dc.date.accessioned2015-12-13T22:30:45Z
dc.date.available2015-12-13T22:30:45Z
dc.identifier.issn0213-2230
dc.identifier.urihttp://hdl.handle.net/1885/74982
dc.description.abstractWe consider Schrödinger operators on a metric cone whose cross section is a closed Riemannian manifold (Y, h) of dimension d-1 ≥ 2. Thus the metric on the cone M = (0,∞)r × Y is dr2+r 2h. Let Δ be the Friedrichs Laplacian on M and let V0 be a smoot
dc.publisherUniversidad Autonoma de Madrid
dc.sourceRevista Matematica Iberoamericana
dc.titleThe Riesz transform for homogeneous Schrdinger operators on metric cones
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume30
dc.date.issued2014
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationU3488905xPUB4408
local.type.statusPublished Version
local.contributor.affiliationHassell, Andrew, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationLin, Peijie, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage477
local.bibliographicCitation.lastpage522
local.identifier.doi10.4171/rmi/790
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
dc.date.updated2015-12-11T08:56:23Z
local.identifier.scopusID2-s2.0-84905583426
local.identifier.thomsonID000343019600006
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator