Skip navigation
Skip navigation

Existence of entire solutions to the Monge-Ampre equation

Jian, Huaiyu; Wang, Xu-Jia

Description

We prove the existence of infinitely many entire convex solutions to the Monge-Ampère equation det D2u = f in ℝn, assuming that the inhomogeneous term f ≥ 0 and is of polynomial growth at infinity. When f satisfies the doubling condition, we show tha

dc.contributor.authorJian, Huaiyu
dc.contributor.authorWang, Xu-Jia
dc.date.accessioned2015-12-13T22:28:41Z
dc.identifier.issn0002-9327
dc.identifier.urihttp://hdl.handle.net/1885/74311
dc.description.abstractWe prove the existence of infinitely many entire convex solutions to the Monge-Ampère equation det D2u = f in ℝn, assuming that the inhomogeneous term f ≥ 0 and is of polynomial growth at infinity. When f satisfies the doubling condition, we show tha
dc.publisherJohns Hopkins University Press
dc.sourceAmerican Journal of Mathematics
dc.titleExistence of entire solutions to the Monge-Ampre equation
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume136
dc.date.issued2014
local.identifier.absfor010101 - Algebra and Number Theory
local.identifier.ariespublicationU3488905xPUB4056
local.type.statusPublished Version
local.contributor.affiliationJian, Huaiyu, TSINGHUA UNIVERSITY
local.contributor.affiliationWang, Xu-Jia, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue4
local.bibliographicCitation.startpage1093
local.bibliographicCitation.lastpage1106
local.identifier.doi10.1353/ajm.2014.0029
dc.date.updated2015-12-11T08:40:38Z
local.identifier.scopusID2-s2.0-84905175170
local.identifier.thomsonID000339455300007
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Jian_Existence_of_entire_solutions_2014.pdf382.92 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator