Skip navigation
Skip navigation

Uniqueness of diffusion operators and capacity estimates

Robinson, Derek

Description

Let Ω be a connected open subset of Rd. We analyse L1-uniqueness of real second-order partial differential operators, and, on Ω where, and C(x) = (ckl(x)) > 0 for all x ∈ Ω. Boundedness properties of the coefficients are expressed indirectly in terms

dc.contributor.authorRobinson, Derek
dc.date.accessioned2015-12-13T22:17:24Z
dc.identifier.issn1424-3199
dc.identifier.urihttp://hdl.handle.net/1885/71106
dc.description.abstractLet Ω be a connected open subset of Rd. We analyse L1-uniqueness of real second-order partial differential operators, and, on Ω where, and C(x) = (ckl(x)) > 0 for all x ∈ Ω. Boundedness properties of the coefficients are expressed indirectly in terms
dc.publisherBirkhauser Verlag
dc.sourceJournal of Evolution Equations
dc.titleUniqueness of diffusion operators and capacity estimates
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume13
dc.date.issued2013
local.identifier.absfor010108 - Operator Algebras and Functional Analysis
local.identifier.absfor010110 - Partial Differential Equations
local.identifier.ariespublicationf5625xPUB2559
local.type.statusPublished Version
local.contributor.affiliationRobinson, Derek, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue1
local.bibliographicCitation.startpage229
local.bibliographicCitation.lastpage250
local.identifier.doi10.1007/s00028-013-0176-4
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
dc.date.updated2015-12-11T07:33:43Z
local.identifier.scopusID2-s2.0-84874221588
local.identifier.thomsonID000314972700010
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Robinson_Uniqueness_of_diffusion_2013.pdf317.42 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator