Skip navigation
Skip navigation

Weak Continuity of the Complex k-Hessian Operators With Respect To Local Uniform Convergence

Trudinger, Neil; Zhang, Wei

Description

In this paper, we study the properties of k-plurisubharmonic functions defined on domains in ℂn. By the monotonicity formula, we give an alternative proof of the weak continuity of complex k-Hessian operators with respect to local uniform convergence.

dc.contributor.authorTrudinger, Neil
dc.contributor.authorZhang, Wei
dc.date.accessioned2015-12-13T22:17:08Z
dc.date.available2015-12-13T22:17:08Z
dc.identifier.issn0004-9727
dc.identifier.urihttp://hdl.handle.net/1885/71001
dc.description.abstractIn this paper, we study the properties of k-plurisubharmonic functions defined on domains in ℂn. By the monotonicity formula, we give an alternative proof of the weak continuity of complex k-Hessian operators with respect to local uniform convergence.
dc.publisherAustralian Mathematics Publishing Association
dc.sourceBulletin of the Australian Mathematical Society
dc.titleWeak Continuity of the Complex k-Hessian Operators With Respect To Local Uniform Convergence
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume89
dc.date.issued2014
local.identifier.absfor010108 - Operator Algebras and Functional Analysis
local.identifier.ariespublicationU3488905xPUB2508
local.type.statusPublished Version
local.contributor.affiliationTrudinger, Neil, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationZhang, Wei, College of Physical and Mathematical Sciences, ANU
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage227
local.bibliographicCitation.lastpage233
local.identifier.doi10.1017/S0004972713000336
local.identifier.absseo970101 - Expanding Knowledge in the Mathematical Sciences
dc.date.updated2015-12-11T07:31:08Z
local.identifier.scopusID2-s2.0-84902130574
local.identifier.thomsonID000338416700006
CollectionsANU Research Publications

Download

There are no files associated with this item.


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator