Skip navigation
Skip navigation

Generalization Performance of Regularization Networks and Support Vector Machines Via Entropy Numbers of Compact Operators

Williamson, Robert; Smola, Alexander; Schoelkopf, Bernhard


We derive new bounds for the generalization error of kernel machines, such as support vector machines and related regularization networks by obtaining new bounds on their covering numbers. The proofs make use of a viewpoint that is apparently novel in the field of statistical learning theory. The hypothesis class is described in terms of a linear operator mapping from a possibly infinite-dimensional unit ball in feature space into a finite-dimensional space. The covering numbers of the class...[Show more]

CollectionsANU Research Publications
Date published: 2001
Type: Journal article
Source: IEEE Transactions on Information Theory
DOI: 10.1109/18.945262


There are no files associated with this item.

Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator