Skip navigation
Skip navigation

The effect of including molecular opacities of variable composition on the evolution of intermediate-mass AGB stars

Fishlock, Cherie; Karakas, Amanda; Stancliffe, Richard

Description

Calculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce the accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N and O. A number of prior calculations of intermediate-mass AGB stellar...[Show more]

dc.contributor.authorFishlock, Cherie
dc.contributor.authorKarakas, Amanda
dc.contributor.authorStancliffe, Richard
dc.date.accessioned2015-12-10T23:32:47Z
dc.identifier.issn0035-8711
dc.identifier.urihttp://hdl.handle.net/1885/68989
dc.description.abstractCalculations from stellar evolutionary models of low- and intermediate-mass asymptotic giant branch (AGB) stars provide predictions of elemental abundances and yields for comparison to observations. However, there are many uncertainties that reduce the accuracy of these predictions. One such uncertainty involves the treatment of low-temperature molecular opacities that account for the surface abundance variations of C, N and O. A number of prior calculations of intermediate-mass AGB stellar models that incorporate both efficient third dredge-up and hot bottom burning include a molecular opacity treatment which does not consider the depletion of C and O due to hot bottom burning. Here we update the molecular opacity treatment and investigate the effect of this improvement on calculations of intermediate-mass AGB stellar models. We perform tests on two masses, 5 and 6 M⊙, and two metallicities, Z = 0.001 and 0.02, to quantify the variations between two opacity treatments. We find that several evolutionary properties (e.g. radius, Teff and Tbce) are dependent on the opacity treatment. Larger structural differences occur for the Z = 0.001 models compared to the Z = 0.02 models indicating that the opacity treatment has a more significant effect at lower metallicity. As a consequence of the structural changes, the predictions of isotopic yields are slightly affected with most isotopes experiencing changes up to 60 per cent for the Z = 0.001 models and 20 per cent for the Z = 0.02 models. Despite this moderate effect, we conclude that it is more fitting to use variable molecular opacities for models undergoing hot bottom burning.
dc.publisherBlackwell Publishing Ltd
dc.sourceMonthly Notices of the Royal Astronomical Society
dc.titleThe effect of including molecular opacities of variable composition on the evolution of intermediate-mass AGB stars
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume438
dc.date.issued2014
local.identifier.absfor020100 - ASTRONOMICAL AND SPACE SCIENCES
local.identifier.ariespublicationU3488905xPUB1886
local.type.statusPublished Version
local.contributor.affiliationFishlock, Cherie, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationKarakas, Amanda, College of Physical and Mathematical Sciences, ANU
local.contributor.affiliationStancliffe, Richard , College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage1741
local.bibliographicCitation.lastpage1750
local.identifier.doi10.1093/mnras/stt2313
dc.date.updated2015-12-10T11:22:05Z
local.identifier.scopusID2-s2.0-84893425496
local.identifier.thomsonID000330955900062
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Fishlock_The_effect_of_including_2014.pdf1.05 MBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator