Skip navigation
Skip navigation

Numerical study on the effects of hierarchical wavy interface morphology on fracture toughness

Li, Bing-Wei; Zhao, Hong-Ping; Qin, Qing Hua; Feng, Xi-Qiao; Yu, Shou Wen

Description

In this paper, we investigate the effects of the hierarchical wavy morphology of an interface on the apparent interfacial fracture toughness. First, the influence of two-level hierarchical sinusoidal geometry under mode-I and mode-II far-field loadings on crack propagation behavior is numerically studied by using a cohesive zone model. Second, the effects of interfacial friction on the mode-II effective fracture toughness are examined. The results show that an interface with a hierarchical...[Show more]

dc.contributor.authorLi, Bing-Wei
dc.contributor.authorZhao, Hong-Ping
dc.contributor.authorQin, Qing Hua
dc.contributor.authorFeng, Xi-Qiao
dc.contributor.authorYu, Shou Wen
dc.date.accessioned2015-12-10T23:26:18Z
dc.identifier.issn0927-0256
dc.identifier.urihttp://hdl.handle.net/1885/67700
dc.description.abstractIn this paper, we investigate the effects of the hierarchical wavy morphology of an interface on the apparent interfacial fracture toughness. First, the influence of two-level hierarchical sinusoidal geometry under mode-I and mode-II far-field loadings on crack propagation behavior is numerically studied by using a cohesive zone model. Second, the effects of interfacial friction on the mode-II effective fracture toughness are examined. The results show that an interface with a hierarchical sinusoidal structure has relatively higher fracture resistance ability, especially for mode-II cracks, than an interface with a flat or pure sinusoidal interface. Moreover, it is found that interfacial friction notably enhances the mode-II fracture toughness of a hierarchical sinusoidal interfacial crack. This study is helpful not only for understanding the superior mechanical properties of some biological materials, but also for optimal design of advanced composites with enhanced fracture toughness.
dc.publisherElsevier
dc.sourceComputational Materials Science
dc.subjectKeywords: Advanced composites; Cohesive zone model; Crack propagation behavior; Effective fracture; Far-field; Hierarchical structures; Interfacial cracks; Interfacial fracture toughness; Interfacial friction; Mode II; mode-II cracks; Mode-II fracture toughness; Nu Biological materials; Cohesive zone model; Fracture toughness; Hierarchical structure; Interfacial crack
dc.titleNumerical study on the effects of hierarchical wavy interface morphology on fracture toughness
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume57
dc.date.issued2012
local.identifier.absfor091202 - Composite and Hybrid Materials
local.identifier.ariespublicationf2965xPUB1503
local.type.statusPublished Version
local.contributor.affiliationLi, Bing-Wei, Tsinghua University
local.contributor.affiliationZhao, Hong-Ping, Tsinghua University
local.contributor.affiliationQin, Qing Hua, College of Engineering and Computer Science, ANU
local.contributor.affiliationFeng, Xi-Qiao, Tsinghua University
local.contributor.affiliationYu, Shou Wen, Tsinghua University
local.description.embargo2037-12-31
local.bibliographicCitation.startpage14
local.bibliographicCitation.lastpage22
local.identifier.doi10.1016/j.commatsci.2011.01.032
local.identifier.absseo970109 - Expanding Knowledge in Engineering
dc.date.updated2016-02-24T08:14:38Z
local.identifier.scopusID2-s2.0-84857921220
local.identifier.thomsonID000300990200004
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Li_Numerical_study_on_the_effects_2012.pdf1.81 MBAdobe PDF    Request a copy
02_Li_Numerical_study_on_the_effects_2012.pdf1.73 MBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator