Skip navigation
Skip navigation

A protein synthesis and nitric oxide-dependent presynaptic enhancement in persistent forms of long-term potentiation

Johnstone, Victoria; Raymond, Clarke

Description

Long-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2, and 3 are unknown. Neurotransmitter release in the expression of LTP1, 2, and 3 was measured via FM 1-43 destaining from CA3 terminals in hippocampal...[Show more]

dc.contributor.authorJohnstone, Victoria
dc.contributor.authorRaymond, Clarke
dc.date.accessioned2015-12-10T22:50:33Z
dc.identifier.issn1072-0502
dc.identifier.urihttp://hdl.handle.net/1885/58674
dc.description.abstractLong-term potentiation (LTP) is an important process underlying learning and memory in the brain. At CA3-CA1 synapses in the hippocampus, three discrete forms of LTP (LTP1, 2, and 3) can be differentiated on the basis of maintenance and induction mechanisms. However, the relative roles of pre- and post-synaptic expression mechanisms in LTP1, 2, and 3 are unknown. Neurotransmitter release in the expression of LTP1, 2, and 3 was measured via FM 1-43 destaining from CA3 terminals in hippocampal slices from male Wistar rats (7-8 wk). No difference in vesicle turnover rate was observed for LTP1 up to 160 min following induction by one train of theta-burst stimulation (1TBS). A presynaptic enhancement was found for LTP2 at 160 min after induction by 4TBS, and for LTP3 at both 80 and 160 min after induction by 8TBS. Inhibition of nitric oxide (NO) signaling blocked both LTP2 and LTP3 maintenance and the associated enhanced release. LTP2 maintenance and its presynaptic expression were dependent on protein synthesis, but not gene transcription. LTP3 maintenance was dependent on both translation and transcription, but like LTP2, the enhanced release only required translation. These data considerably strengthen the mechanistic separation of LTP1, 2, and 3, supporting a model of multiple, discrete forms of LTP at CA3-CA1 synapses rather than different temporal phases.
dc.publisherCold Spring Harbor Laboratory Press
dc.sourceLearning and Memory
dc.subjectKeywords: 2 phenyl 4,4,5,5 tetramethylimidazoline 1 oxyl 3 oxide; 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; amine oxide; enzyme inhibitor; imidazole derivative; n(g) nitroarginine methyl ester; nerve protein; nitric oxide; nitric oxide synthase; prote
dc.titleA protein synthesis and nitric oxide-dependent presynaptic enhancement in persistent forms of long-term potentiation
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume18
dc.date.issued2011
local.identifier.absfor110999 - Neurosciences not elsewhere classified
local.identifier.ariespublicationf5625xPUB453
local.type.statusPublished Version
local.contributor.affiliationJohnstone, Victoria, College of Medicine, Biology and Environment, ANU
local.contributor.affiliationRaymond, Clarke, College of Medicine, Biology and Environment, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue10
local.bibliographicCitation.startpage625
local.bibliographicCitation.lastpage633
local.identifier.doi10.1101/lm.2245911
dc.date.updated2016-02-24T09:26:05Z
local.identifier.scopusID2-s2.0-84855718457
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Johnstone_A_protein_synthesis_and_nitric_2011.pdf730.1 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator