Skip navigation
Skip navigation

Motion Estimation for Nonoverlapping Multicamera Rigs: Linear Algebraic and L infinity Geometric Solutions

Kim, Jae-Hak; Li, Hongdong; Hartley, Richard

Description

We investigate the problem of estimating the ego-motion of a multicamera rig from two positions of the rig. We describe and compare two new algorithms for finding the 6 degrees of freedom (3 for rotation and 3 for translation) of the motion. One algorithm gives a linear solution and the other is a geometric algorithm that minimizes the maximum measurement errorthe optimal L-\infty solution. They are described in the context of the General Camera Model (GCM), and we pay particular attention to...[Show more]

dc.contributor.authorKim, Jae-Hak
dc.contributor.authorLi, Hongdong
dc.contributor.authorHartley, Richard
dc.date.accessioned2015-12-10T22:45:38Z
dc.identifier.issn0162-8828
dc.identifier.urihttp://hdl.handle.net/1885/58594
dc.description.abstractWe investigate the problem of estimating the ego-motion of a multicamera rig from two positions of the rig. We describe and compare two new algorithms for finding the 6 degrees of freedom (3 for rotation and 3 for translation) of the motion. One algorithm gives a linear solution and the other is a geometric algorithm that minimizes the maximum measurement errorthe optimal L-\infty solution. They are described in the context of the General Camera Model (GCM), and we pay particular attention to multicamera systems in which the cameras have nonoverlapping or minimally overlapping field of view. Many nonlinear algorithms have been developed to solve the multicamera motion estimation problem. However, no linear solution or guaranteed optimal geometric solution has previously been proposed. We made two contributions: 1) a fast linear algebraic method using the GCM and 2) a guaranteed globally optimal algorithm based on the L-\infty geometric error using the branch-and-bound technique. In deriving the linear method using the GCM, we give a detailed analysis of degeneracy of camera configurations. In finding the globally optimal solution, we apply a rotation space search technique recently proposed by Hartley and Kahl. Our experiments conducted on both synthetic and real data have shown excellent results.
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE Inc)
dc.sourceIEEE Transactions on Pattern Analysis and Machine Intelligence
dc.subjectKeywords: Branch and bounds; Camera configuration; Camera model; Degrees of freedom; Ego-motion; Epipolar equation; Field of views; Generalized camera; Geometric algorithm; Geometric errors; Hartley; Linear methods; Linear solution; Linear-algebraic; Multi-camera r Branch and bound; Epipolar equation; Generalized camera; Linear programming.; Motion estimation; Multicamera rigs
dc.titleMotion Estimation for Nonoverlapping Multicamera Rigs: Linear Algebraic and L infinity Geometric Solutions
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume32
dc.date.issued2010
local.identifier.absfor080106 - Image Processing
local.identifier.ariespublicationu4334215xPUB449
local.type.statusPublished Version
local.contributor.affiliationKim, Jae-Hak, University of London
local.contributor.affiliationLi, Hongdong, College of Engineering and Computer Science, ANU
local.contributor.affiliationHartley, Richard, College of Engineering and Computer Science, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue6
local.bibliographicCitation.startpage1044
local.bibliographicCitation.lastpage1059
local.identifier.doi10.1109/TPAMI.2009.82
local.identifier.absseo899999 - Information and Communication Services not elsewhere classified
dc.date.updated2016-02-24T11:00:48Z
local.identifier.scopusID2-s2.0-77951622868
local.identifier.thomsonID000276671900007
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Kim_Motion_Estimation_for_2010.pdf2.05 MBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator