Skip navigation
Skip navigation

Monotone conditional complexity bounds on future prediction errors

Chernov, Alexey; Hutter, Marcus

Description

We bound the future loss when predicting any (computably) stochastic sequence online. Solomonoff finitely bounded the total deviation of his universal predictor M from the true distribution μ by the algorithmic complexity of μ. Here we assume that we ar

CollectionsANU Research Publications
Date published: 2005
Type: Conference paper
URI: http://hdl.handle.net/1885/57726
Source: Algorithmic Learning Theory: Proceedings of the 16th International Conference on Algorithmic Learning Theory (ALT-05) - LNAI 3734
DOI: 10.1016/j.ic.2006.10.004

Download

File Description SizeFormat Image
01_Chernov_Monotone_conditional_2005.pdf255.49 kBAdobe PDF    Request a copy
02_Chernov_Monotone_conditional_2005.pdf95.28 kBAdobe PDF    Request a copy
03_Chernov_Monotone_conditional_2005.pdf94.7 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  12 November 2018/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator