Kernel measures of independence for non-iid data
-
Altmetric Citations
Zhang, Xinhua; Song, Le; Gretton, Arthur; Smola, Alexander
Description
Many machine learning algorithms can be formulated in the framework of statistical independence such as the Hilbert Schmidt Independence Criterion. In this paper, we extend this criterion to deal with structured and interdependent observations. This is achieved by modeling the structures using undirected graphical models and comparing the Hilbert space embeddings of distributions. We apply this new criterion to independent component analysis and sequence clustering.
Collections | ANU Research Publications |
---|---|
Date published: | 2008 |
Type: | Conference paper |
URI: | http://hdl.handle.net/1885/54355 |
Source: | Advances in Neural Information Processing Systems 21 |
DOI: | 10.1.1.143.8375&rank=1 |
Download
File | Description | Size | Format | Image |
---|---|---|---|---|
01_Zhang_Kernel_measures_of_2008.pdf | 27.54 kB | Adobe PDF | Request a copy | |
02_Zhang_Kernel_measures_of_2008.pdf | 319.11 kB | Adobe PDF | Request a copy | |
03_Zhang_Kernel_measures_of_2008.pdf | 191.97 kB | Adobe PDF | Request a copy | |
04_Zhang_Kernel_measures_of_2008.pdf | 16.76 kB | Adobe PDF | Request a copy | |
05_Zhang_Kernel_measures_of_2008.pdf | 289.25 kB | Adobe PDF | Request a copy | |
06_Zhang_Kernel_measures_of_2008.pdf | 70.56 kB | Adobe PDF | Request a copy | |
07_Zhang_Kernel_measures_of_2008.pdf | 317.59 kB | Adobe PDF | Request a copy |
Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.
Updated: 17 November 2022/ Responsible Officer: University Librarian/ Page Contact: Library Systems & Web Coordinator