Skip navigation
Skip navigation

Kernel measures of independence for non-iid data

Zhang, Xinhua; Song, Le; Gretton, Arthur; Smola, Alexander

Description

Many machine learning algorithms can be formulated in the framework of statistical independence such as the Hilbert Schmidt Independence Criterion. In this paper, we extend this criterion to deal with structured and interdependent observations. This is achieved by modeling the structures using undirected graphical models and comparing the Hilbert space embeddings of distributions. We apply this new criterion to independent component analysis and sequence clustering.

CollectionsANU Research Publications
Date published: 2008
Type: Conference paper
URI: http://hdl.handle.net/1885/54355
Source: Advances in Neural Information Processing Systems 21
DOI: 10.1.1.143.8375&rank=1

Download

File Description SizeFormat Image
01_Zhang_Kernel_measures_of_2008.pdf27.54 kBAdobe PDF    Request a copy
02_Zhang_Kernel_measures_of_2008.pdf319.11 kBAdobe PDF    Request a copy
03_Zhang_Kernel_measures_of_2008.pdf191.97 kBAdobe PDF    Request a copy
04_Zhang_Kernel_measures_of_2008.pdf16.76 kBAdobe PDF    Request a copy
05_Zhang_Kernel_measures_of_2008.pdf289.25 kBAdobe PDF    Request a copy
06_Zhang_Kernel_measures_of_2008.pdf70.56 kBAdobe PDF    Request a copy
07_Zhang_Kernel_measures_of_2008.pdf317.59 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  12 November 2018/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator