Skip navigation
Skip navigation

Fast Computation of Bernoulli, Tangent and Secant Numbers

Brent, Richard; Harvey, David

Description

We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or Euler) numbers. In particular, we give asymptotically fast algorithms for computing the first n such numbers O(n2(logn)2+o(1)). We also give very short in-place algorithms for com

CollectionsANU Research Publications
Date published: 2011
Type: Conference paper
URI: http://hdl.handle.net/1885/52297
Source: Proceedings of a Workshop on Computational and Analytical Mathematics in honour of Jonathan Borwein's 60th birthday
DOI: 10.1007/978-1-4614-7621-4_8

Download

File Description SizeFormat Image
01_Brent_Fast_Computation_of_Bernoulli,_2011.pdf138.21 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  23 August 2018/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator