Skip navigation
Skip navigation

On proper actions of Lie groups of dimension n2+ 1 on n-dimensional complex manifolds

Isaev, Alexander

Description

We explicitly classify all pairs (M, G), where M is a connected complex manifold of dimension n ≥ 2 and G is a connected Lie group acting properly and effectively on M by holomorphic transformations and having dimension dG satisfying n2 + 2 ≤ dG < n2

dc.contributor.authorIsaev, Alexander
dc.date.accessioned2015-12-10T21:53:41Z
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/1885/38607
dc.description.abstractWe explicitly classify all pairs (M, G), where M is a connected complex manifold of dimension n ≥ 2 and G is a connected Lie group acting properly and effectively on M by holomorphic transformations and having dimension dG satisfying n2 + 2 ≤ dG < n2
dc.publisherAcademic Press
dc.sourceJournal of Mathematical Analysis and Applications
dc.subjectKeywords: Complex manifolds; Proper group actions
dc.titleOn proper actions of Lie groups of dimension n2+ 1 on n-dimensional complex manifolds
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume342
dc.date.issued2008
local.identifier.absfor010112 - Topology
local.identifier.ariespublicationu3169606xPUB164
local.type.statusPublished Version
local.contributor.affiliationIsaev, Alexander, College of Physical and Mathematical Sciences, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue2
local.bibliographicCitation.startpage1160
local.bibliographicCitation.lastpage1174
local.identifier.doi10.1016/j.jmaa.2007.12.050
dc.date.updated2015-12-09T07:19:44Z
local.identifier.scopusID2-s2.0-40649097956
local.identifier.thomsonID000254945300031
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Isaev_On_proper_actions_of_Lie_2008.pdf209.69 kBAdobe PDF    Request a copy


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  19 May 2020/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator