Skip navigation
Skip navigation

Bayesian model averaging in the instrumental variable regression model

Koop, Gary; Leon-Gonzalez, Roberto; Strachan, Rodney

Description

This paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very...[Show more]

dc.contributor.authorKoop, Gary
dc.contributor.authorLeon-Gonzalez, Roberto
dc.contributor.authorStrachan, Rodney
dc.date.accessioned2015-12-08T22:46:11Z
dc.identifier.issn0304-4076
dc.identifier.urihttp://hdl.handle.net/1885/38039
dc.description.abstractThis paper considers the instrumental variable regression model when there is uncertainty about the set of instruments, exogeneity restrictions, the validity of identifying restrictions and the set of exogenous regressors. This uncertainty can result in a huge number of models. To avoid statistical problems associated with standard model selection procedures, we develop a reversible jump Markov chain Monte Carlo algorithm that allows us to do Bayesian model averaging. The algorithm is very flexible and can be easily adapted to analyze any of the different priors that have been proposed in the Bayesian instrumental variables literature. We show how to calculate the probability of any relevant restriction such as exogeneity or over-identification. We illustrate our methods in a returns-to-schooling application.
dc.publisherElsevier
dc.sourceJournal of Econometrics
dc.subjectKeywords: Bayesian; Bayesian model averaging; Endogeneity; Instrumental variables; Regression model; Reversible jump Markov chain Monte Carlo; Reversible jump Markov chain Monte Carlo algorithm; Simultaneous equations; Standard model; Statistical problems; Algorith Bayesian; Endogeneity; Reversible jump Markov chain Monte Carlo; Simultaneous equations
dc.titleBayesian model averaging in the instrumental variable regression model
dc.typeJournal article
local.description.notesImported from ARIES
local.identifier.citationvolume171
dc.date.issued2012
local.identifier.absfor140301 - Cross-Sectional Analysis
local.identifier.absfor140302 - Econometric and Statistical Methods
local.identifier.absfor140211 - Labour Economics
local.identifier.ariespublicationU9501697xPUB156
local.type.statusPublished Version
local.contributor.affiliationKoop, Gary, University of Strathclyde
local.contributor.affiliationLeon-Gonzalez, Roberto, National Graduate Institute of Policy Studies
local.contributor.affiliationStrachan, Rodney, College of Business and Economics, ANU
local.description.embargo2037-12-31
local.bibliographicCitation.issue2 (Dec 2012)
local.bibliographicCitation.startpage237
local.bibliographicCitation.lastpage250
local.identifier.doi10.1016/j.jeconom.2012.06.005
local.identifier.absseo910202 - Human Capital Issues
local.identifier.absseo910404 - Productivity (excl. Public Sector)
local.identifier.absseo910208 - Micro Labour Market Issues
dc.date.updated2016-02-24T12:00:33Z
local.identifier.scopusID2-s2.0-84868207585
local.identifier.thomsonID000311470500010
CollectionsANU Research Publications

Download

File Description SizeFormat Image
01_Koop_Bayesian_model_averaging_in_2012.pdf515.62 kBAdobe PDFThumbnail
02_Koop_Bayesian_model_averaging_in_2012.pdf446.24 kBAdobe PDFThumbnail


Items in Open Research are protected by copyright, with all rights reserved, unless otherwise indicated.

Updated:  17 November 2022/ Responsible Officer:  University Librarian/ Page Contact:  Library Systems & Web Coordinator